

Documentation for LemonLDAP::NG 2.0

	Documentation index
	Presentation

	Workshops

	Installation and configuration
	Packaged versions
	Debian

	Ubuntu

	Bug report

	Development

	Other

Presentation

	Presentation

	Main features

	Quick start tutorial

	Choose a platform

Installation

Before installation

[image: image0]

	Prerequisites and dependencies

	Upgrade notes

Installation

[image: image1]

	Installation from the tarball

	Installation on Debian/Ubuntu with packages

	Installation on RHEL/CentOS with packages

	Installation on Suse Linux Enterprise Server with packages

	Run in LemonLDAP::NG in Docker

	Node.js handler [image: new]

After installation

[image: image3]

	Deploy Nginx configuration (recommended
configuration)

	Deploy Apache configuration

	Deploy LemonLDAP::NG on Plack servers family
(Twiggy, Starman, Corona,…) [image: new]

Configuration

First steps

[image: image5]

	Configuration overview

	Configure Single Sign On cookie and portal URL

	Parameter redirections

	Set exported variables

	Manage virtual hosts

	Configure sessions specificities

Portal

[image: image6]

	Presentation

	Portal customization

	Portal menu

	REST/SOAP servers

	Captcha

	Public pages

Authentication, users and password databases

[image: image7]

	Official Backends

	Authentication

	Users

	Password

	Active Directory

	✔

	✔

	✔

	Apache (Basic, NTLM, OTP, …)

	✔

	
	

	CAS

	✔

	[image: new]

	

	SQL Databases

	✔

	✔

	✔

	Demonstration

	✔

	✔

	✔

	Facebook

	✔

	✔

	

	GitHub [image: new] 1

	✔

	
	

	GPG [image: new] 2

	✔

	
	

	Kerberos [image: new]

	✔

	
	

	LDAP

	✔

	✔

	✔

	LinkedIn

	✔

	
	

	Null

	✔

	✔

	✔

	OpenID Connect

	✔

	✔

	

	PAM [image: new]

	✔

	
	

	Proxy LL::NG

	✔

	✔

	

	Radius

	✔

	
	

	REST [image: new]

	✔

	✔

	✔

	SAML 2.0 / Shibboleth

	✔

	✔

	

	Slave

	✔

	✔

	

	SSL

	✔

	
	

	Twitter

	✔

	
	

	WebID

	✔

	✔

	

	Yubikey [image: deprecated]

	Replaced by Yubikey Second Factor

	
	

	Custom modules [image: new]

	✔

	✔

	✔

	Combo Backends

	Authentication

	Users

	Password

	Choice by users

	✔

	✔

	✔

	Combination of auth schemes [image: new]

	✔

	✔

	✔ (since 2.0.10)

	Multiple backends stack [image: deprecated]

	Replaced by Combination

	
	

	Obsolete Backends

	Authentication

	Users

	Password

	OpenID

	✔

	✔

	

	Remote LL::NG

	✔

	✔

	

	Second factor (documentation)

	Authentication

	TOTP-or-U2F [image: new]

	✔

	U2F [image: new]

	✔

	TOTP (Google Authenticator,…) [image: new]

	✔

	E-mail Second Factor [image: new]

	✔

	External Second Factor (OTP, SMS,…) [image: new]

	✔

	Radius Second Factor [image: new] 3

	✔

	REST Second Factor [image: new]

	✔

	Yubikey [image: new]

	✔

	Additional second factors [image: new] 4

	✔

	Auth addons

	Authentication

	Auto Signin [image: new]

	✔

Identity provider

Tip

	All identity provider protocols can be used simultaneously

	LemonLDAP::NG can be used as a
proxy between those protocols

[image: image26]

	Protocol

	Service Provider

	Identity Provider

	CAS 1.0 / 2.0 / 3.0

	✔

	✔

	SAML 2.0 / Shibboleth

	✔

	✔

	OpenID 2.0 (obsolete)

	✔

	✔

	OpenID Connect

	✔

	✔

	Get parameters provider (for poor applications)

	
	✔

Tip

	Issuers timeout : Delay for issuers to submit their authentication requests

	To avoid a bad/expired token and lose redirection to the SP protected
application after authentication if IdP URLs are served by different load
balancers, you can force Issuer tokens to be stored into Global Storage
by editing lemonldap-ng.ini in section [portal]:

[portal]
forceGlobalStorageIssuerOTT = 1

Attacks and Protection

Tip

To learn or find out more about security, go to
Security documentation

[image: image27]

	Attack

	LLNG protection

	System Integrator protection

	Brute Force

	✔

	✔

	Page Content

	✔

	

	CSRF

	✔

	

	Deny of Service

	
	✔

	Invisible iFrame

	✔

	✔

	Man-in-the-Middle

	
	✔

	Software Exploit

	
	✔

	SSO by-passing

	
	✔

	XSS

	✔

	

Plugins

[image: image28]

	Name

	Description

	Auto Signin [image: new]

	Auto Signin Addon

	Brute Force protection [image: new]

	User must wait to log in after some failed login attempts

	CDA

	Cross Domain Authentication

	Check DevOps 5 [image: new]

	Check DevOps handler file plugin

	Check state [image: new]

	Check state plugin (test page)

	Check user 6 [image: new]

	Check access rights, transmitted headers and session attibutes for a specific user and URL

	Configuration viewer [image: new]

	Edit WebSSO configuration in Read Only mode

	Context switching 7[image: new]

	Switch context other users

	CrowdSec 8[image: new]

	CrowdSec bouncer

	Custom

	Write a custom plugin

	Decrypt value 9[image: beta]

	Decrypt ciphered values

	Display login history

	Display Success/Fails logins

	Force Authentication

	Force authentication to access to Portal

	Global Logout 10

	Suggest to close all opened sessions at logout

	Grant Sessions

	Rules to apply before allowing a user to open a session

	Impersonation 11[image: new]

	Allow users to use another identity

	Find user 12[image: new]

	Search for user account

	Notifications system

	DIsplay a message during log in process

	Portal Status

	Experimental portal status page

	Public pages

	Enable public pages system

	Refresh session API 13

	Plugin that provides an API to refresh a user session

	Reset password by mail

	Send a mail to reset its password

	Reset certificate by mail 14[image: new]

	Allow users to reset their certificate

	REST services [image: new]

	REST server for Proxy

	SOAP services [image: deprecated]

	SOAP server for Proxy

	Stay connected [image: new]

	Enable persistent connection on same browser

	Upgrade session [image: new]

	This plugin explains to an already authenticated user that a higher authentication level is required to access the URL instead of reject him

Handlers

[image: image41]

Handlers are software control agents to be installed on your web servers
(Nginx, Apache, PSGI like Plack based servers or Node.js).

	Handler type

	Apache

	LLNG FastCGI/uWSGI server (Nginx, or SSOaaS)

	Plack servers [https://plackperl.org]

	Node.js (express apps [http://expressjs.com/] or SSOaaS)

	Self protected apps

	Comment

	Main (default handler)

	✔

	✔

	✔

	Partial ** 15 **

	✔

	

	AuthBasic

	✔

	✔

	✔

	
	✔

	Designed for some server-to-server applications

	CDA

	✔

	✔

	✔

	
	✔

	For Cross Domain Authentication

	DevOps (SSOaaS) [image: new]

	✔

	✔

	✔

	✔

	
	Allows application developers to define their own rules and headers inside their applications

	DevOpsST (SSOaaS) [image: new]

	✔

	✔

	✔

	✔

	
	Enables both DevOps and Service Token

	OAuth2 16[image: new]

	✔

	✔

	✔

	
	✔

	Uses OpenID Connect/OAuth2 access token to check authentication and authorization, can be used to protect Web Services

	Secure Token

	✔

	✔

	✔

	
	
	Designed to secure exchanges between a LLNG reverse-proxy and a remote app

	Service Token [image: new] (Server-to-Server)

	✔

	✔

	✔

	✔

	✔

	Designed to permit underlying requests (API-Based Infrastructure)

	Zimbra PreAuth

	✔

	✔

	✔

	
	
	

LLNG databases

Configuration database

[image: image46]

LL::NG needs a storage system to store its own configuration (managed by
the manager). Choose one in the following list:

	Backend

	Shareable

	Comment

	File (JSON)

	
	Not shareable between servers except
if used in conjunction with REST
or with a shared file system (NFS,…).
Selected by default during installation.

	YAML [image: new]

	
	Same as File but in YAML format
instead of JSON

	SQL (RDBI/CDBI)

	✔

	Recommended for large-scale systems. Prefer CDBI.

	LDAP

	✔

	

	MongoDB

	✔

	

	SOAP [image: deprecated]

	✔

	Proxy backend to be used in conjunction with another
configuration backend. Can be used to secure another backend
for remote servers.

	REST [image: new]

	✔

	Proxy backend to be used in conjunction with another configuration
backend. Can be used to secure another backend for
remote servers.

	Local [image: new]

	
	Use only lemonldap-ng.ini parameters.

Tip

You can not start with an empty configuration, so read
how to change configuration backend to convert
your existing configuration into another one.

Sessions database

[image: image50]

Sessions are stored using
Apache::Session [http://search.cpan.org/perldoc?Apache::Session]
modules family. All
Apache::Session [http://search.cpan.org/perldoc?Apache::Session]
style modules are usable except for some features.

Attention

If you plan to use LLNG in a large-scale system, take a
look at Performance Test to choose the right
backend. A Browseable SQL backend is
generally a good choice.

	Backend

	Shareable

	Session explorer

	Session restrictions

	Session expiration

	Comment

	File

	
	✔

	✔

	✔

	Not shareable between servers except if used in conjunction with REST session backend or with a shared file system (NFS,…). Selected by default during installation.

	PgJSON

	✔

	✔

	✔

	✔

	Recommended backend for production installations

	Browseable MySQL

	✔

	✔

	✔

	✔

	Recommended for those who prefer MySQL

	Browseable LDAP

	✔

	✔

	✔

	✔

	

	Redis

	✔

	✔

	✔

	✔

	The fastest. Must be secured by network access control.

	MongoDB

	✔

	✔

	✔

	✔

	Must be secured by network access control.

	SQL

	✔

	✔

	✔

	✔

	Unoptimized for session explorer and single session features.

	REST [image: new]

	✔

	✔

	✔

	✔

	Proxy backend to be used in conjunction with another session backend.

	SOAP [image: deprecated]

	✔

	✔

	✔

	✔

	Proxy backend to be used in conjunction with another session backend.

Tip

You can migrate from one session backend to another using the
session conversion script. ([image: new]
since 2.0.7)

Applications protection

[image: image53]

	Writing rules and headers

	Variables that can be used in rules and headers

	Integrate vendor applications

	Integrate self-made applications

	Form replay

	Custom Handlers

	WebServices / API

Well known compatible applications

Note

Here is a list of well known applications that are compatible with
LL::NG. A full list is available on
vendor applications page.

[image: adfs]
[image: alfresco]
[image: awx]
[image: bugzilla]
[image: dokuwiki]
[image: drupal]
[image: fusiondirectory]
[image: gitlab]
[image: glpi]
[image: liferay]
[image: mediawiki]
[image: nextcloud]
[image: simplesamlphp]
[image: wordpress]
[image: xwiki]
[image: zimbra]

Advanced features

[image: image54]

	SMTP server setup

	Notifications system

	Store password in session

	Cross Domain Authentication (CDA)

	Role Based Access Control (RBAC)

	Use custom functions

	Use extended functions

	Reset password by mail (self service)

	Create an account (self service)

	Forward logout to applications

	Secure Token Handler

	AuthBasic Handler

	SSO as a Service (SSOaaS) [image: new]

	Handling server webservice calls [image: new]

	LemonLDAP::NG kubernetes
controller [https://github.com/lemonldap-ng-controller/lemonldap-ng-controller]

	Safe jail

	Login history

	Fast CGI support

	Advanced PSGI usage

	Ignore some manager tests

	See full parameters list

Mini howtos

[image: image57]

	Command Line Interface (lemonldap-ng-cli) examples

	Modify Manager protection

	Configuration and sessions in MySQL

	Configuration and sessions in LDAP

	Configuration and sessions access by REST

	Integration in Active Directory (LDAP and Kerberos)

	Create a protocol proxy (SAML to OpenID, CAS
to SAML ,…)

	Convert HTTP header into environment variable

	Connect to Renater Federation [image: new]

	Run LemonLDAP::NG components behind a reverse proxy

	Configure LL::NG to use an outgoing proxy

Exploitation

[image: image59]

	Performances

	Security

	SELinux

	Handler status page

	Portal state check (health check for fail-over)
[image: new]

	Monitoring

	Logs settings

	Error messages

	High Availability

Bug report

See How to report a bug.

Developer corner

To contribute, see :

	Contribute to project

To develop an handler, see:

	Handler architecture

	Custom handlers

To develop a portal plugin, see manpages:

	Lemonldap::NG::Portal

	Lemonldap::NG::Portal::Auth

	Lemonldap::NG::Portal::UserDB

	Lemonldap::NG::Portal::Main::SecondFactor

	Lemonldap::NG::Portal::Main::Issuer

	Lemonldap::NG::Portal::Main::Plugin

	Lemonldap::NG::Portal::Main::Request (the request object)

To add a new language:

	Join us on
https://www.transifex.com/lemonldapng/lemonldapng/dashboard/

	translate the 3 files

	then we will append them in sources.

If you don’t want to publish your translation (XX must be replaced
by your language code):

	Manager: translate
lemonldap-ng-manager/site/htdocs/static/languages/en.json in
lemonldap-ng-manager/site/htdocs/static/languages/XX.json and
enable it in “lemonldap-ng.ini” file

	Portal: translate
lemonldap-ng-portal/site/htdocs/static/languages/en.json in
lemonldap-ng-portal/site/htdocs/static/languages/XX.json and
enable it in “lemonldap-ng.ini” file

	Portal Mails: translate
lemonldap-ng-portal/site/templates/common/mail/en.json in
lemonldap-ng-portal/site/templates/common/mail/XX.json

	1

	GitHub authentication is available with LLNG ≥
2.0.8

	2

	GPG authentication is available with LLNG ≥ 2.0.2

	3

	Radius second factor is available with LLNG ≥ 2.0.6

	4

	Check DevOps file plugin are available with LLNG ≥
2.0.12

	5

	Additional second factors are available with LLNG ≥
2.0.6

	6

	Check user plugin is available with LLNG ≥ 2.0.3

	7

	Context switching plugin is available with
LLNG ≥ 2.0.6

	8

	CrowdSec bouncer is available with LLNG ≥ 2.0.12

	9

	Decrypt value plugin is available with LLNG ≥
2.0.7

	10

	Global Logout plugin is available with LLNG ≥
2.0.7

	11

	Impersonation plugin is available with LLNG ≥
2.0.3

	12

	Find user plugin is available with LLNG ≥
2.0.11

	13

	Refresh session API plugin is available
with LLNG ≥ 2.0.7

	14

	Reset certificate by mail plugin is
available with LLNG ≥ 2.0.7

	15

	Node.js handler has not yet reached the same
level of functionalities

	16

	OAuth2 Handler is available with LLNG ≥ 2.0.4

Documentation

Presentation

[image: image0]

	How it works

	Main features

	Quick start tutorial

Workshops

	LDAPCon 2019: Connect LL::NG to OpenLDAP and use 2FA, configure SSO
on Fusion Directory and
Dokuwiki [https://github.com/Worteks/ldapcon2019-llng-workshop]

	Pass the SALT 2019: Connect LL::NG to OpenLDAP and use 2FA,
configure SSO on Fusion
Directory [https://github.com/LemonLDAPNG/pts2019-llng-workshop]

Installation and configuration

[image: image1]

	Maintained versions:

	Version 3.0 (dev)

	Version 2.0 (stable)

	Version 1.9 (oldstable)

	Archived versions (unmaintained by LLNG Team)

	Version 1.4

	Version 1.3

	Version 1.2

	Version 1.1

	Version 1.0

Packaged versions

These versions are maintained under distribution umbrella following
their policy.

Debian

Tip

Following Debian Policy, LLNG packages are never upgraded in published distributions. However, security patches are backported by maintenance teams (except some inor ones).

	Debian dist

	
	LLNG version

	Secured

	Maintenance

	LTS Limit

	Extended LTS [https://wiki.debian.org/LTS/Extended] Limit

	6

	Squeeze

	0.9.4.1

	[image: maybe] No known vulnerability

	None

	February 2016

	April 2019

	7

	Wheezy

	1.1.2

	[image: maybe] No known vulnerability

	None 1

	May 2018

	Probably 2021

	8

	Jessie

	1.3.3

	[image: clean] CVE-2019-19791 tagged as minor

	None 1

	June 2020

	Probably 2023

	9

	Stretch

	1.9.7

	[image: clean] CVE-2019-19791 tagged as minor

	Debian LTS Team [https://www.debian.org/lts/]

	June 2022

	

	

	Stretch-backports

	2.0.2

	[image: bad] CVE-2019-12046, CVE-2019-13031, CVE-2019-15941

	None

	June 2019

	

	

	Stretch-backports-sloppy

	2.0.11

	[image: clean]

	LLNG Team, “best effort” 3

	Until Debian 11 release 4

	

	10

	Buster

	2.0.2

	[image: clean] CVE-2019-19791 tagged as minor

	Debian Security Team [https://security-team.debian.org/]

	Probably July 2024

	

	

	Buster-backports

	2.0.11

	[image: clean]

	LLNG Team

	Until Debian 11 release 4

	

	

	Bullseye

	2.0.11

	[image: clean]

	Debian Security Team [https://security-team.debian.org/]

	Probably July 2026

	

	Next

	Testing

	Latest 5

	[image: clean]

	LLNG Team

	
	

See Debian Security
Tracker [https://security-tracker.debian.org/tracker/source-package/lemonldap-ng]
and Debian Package
Tracker [https://tracker.debian.org/pkg/lemonldap-ng] for more.

Ubuntu

Attention

Ubuntu version are included in “universe” branch 8, so not really security maintained. Prefer to use our repositories or Debian ones

	Ubuntu dist

	
	LLNG version

	Secured

	Maintenance

	12.04

	Precise

	1.1.2

	[image: maybe] No known vulnerability

	None

	14.04

	Trusty

	1.2.5

	[image: maybe] No known vulnerability

	None

	16.04

	Xenial 9

	1.4.6

	[image: bad] CVE-2019-12046, CVE-2019-13031

	None

	18.04

	Bionic 9

	1.9.16

	[image: bad] CVE-2019-12046, CVE-2019-13031, CVE-2020-24660

	None

	18.10

	Cosmic

	1.9.17

	[image: bad] CVE-2019-12046, CVE-2019-13031, CVE-2020-24660

	None

	19.04

	Disco

	2.0.2

	[image: bad] CVE-2019-12046, CVE-2019-13031, CVE-2019-15941, CVE-2020-24660

	None

	19.10

	Eoan

	2.0.5

	[image: bad] CVE-2019-15941, CVE-2020-24660

	None

	20.04

	Focal 9

	2.0.7

	[image: bad] CVE-2020-24660

	None

	20.10

	Groovy

	2.0.8

	[image: bad] CVE-2020-24660

	None

	20.10

	Hirsute

	2.0.11

	[image: clean]

	None

Bug report

See Reporting a bug.

Development

[image: image13]

	Bugtracker [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues]

	Source
code [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/tree/master]

	Nightly trunk builds [http://lemonldap-ng.ow2.io/lemonldap-ng/]
(for Debian or Ubuntu,really unstable)

	Git access:

git clone https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng.git

	CPAN test reports:

	LemonLDAP::NG
Common [http://www.cpantesters.org/distro/L/Lemonldap-NG-Common.html]

	LemonLDAP::NG
Handler [http://www.cpantesters.org/distro/L/Lemonldap-NG-Handler.html]

	LemonLDAP::NG
Portal [http://www.cpantesters.org/distro/L/Lemonldap-NG-Portal.html]

	LemonLDAP::NG
Manager [http://www.cpantesters.org/distro/L/Lemonldap-NG-Manager.html]

Other

[image: image14]

	Conferences

	References

	Press

	1(1,2)

	Possible Extended LTS [https://wiki.debian.org/LTS/Extended]

	3

	updated by LLNG Team until dependencies are compatible

	4(1,2)

	around June 2021

	5

	few days after release

	8

	Ubuntu universe/multiverse branches are community maintained (so not
maintained by Canonical), but in fact nobody considers LLNG security
issues. See this
issue [https://bugs.launchpad.net/ubuntu/+source/lemonldap-ng/+bug/1829016]
for example

	9(1,2,3)

	LTS

Presentation

	Presentation

	Main features

	Quick start tutorial

	Platforms overview

Presentation

LemonLDAP::NG is a modular WebSSO (Single Sign On) based on
Apache::Session modules. It simplifies the build of a protected area
with a few changes in the application.

It manages both authentication and authorization and provides headers
for accounting. So you can have a full AAA protection for your web space
as described below.

Architecture

[image: image0]

Main components

	Manager: used to manage LemonLDAP::NG configuration and to
explore sessions. Dedicated to administrators

	Portal: used to authenticate
users, display applications list and provides identity provider
service (SAML [http://en.wikipedia.org/wiki/SAML],
OpenID [http://en.wikipedia.org/wiki/OpenID],
CAS [http://en.wikipedia.org/wiki/Central_Authentication_Service]).
Futhermore, Portal affordes many other features (see
portal for more)

	Handler: used to protect applications which can read HTTP headers
or environment variables to get user information

Databases

Attention

We call “database” a backend where we can read or write a data.
This can be a file, an LDAP directory, etc.

We split databases in two categories:

	External databases: not managed by LemonLDAP::NG, for example
user database

	Internal databases: only used by LemonLDAP::NG

Main
external databases
are:

	Authentication: how authenticate users

	User: where collect user data

	Password: where change the password

Main internal databases are:

	Configuration:
where configuration is stored. This does not include web server
configuration which is not managed by LemonLDAP::NG

	Sessions:
where sessions are stored.

	Notifications:
messages displayed to connected users

	Cache: cache for configuration and sessions

Kinematics

Login

[image: image1]

	User tries to access protected application, his request is catched by
Handler

	SSO cookies is not
detected, so Handler redirects user to Portal

	User authenticates on Portal

	Portal checks authentication

	If authentication succeed, Portal collect user data

	Portal creates a session to store user data

	Portal gets the session key

	Portal creates
SSO cookies with
session key as value

	User is redirected on protected application, with his new cookie

	Handler reads session key from cookie and retrieves user session
datas

	Handler stores user datas in its cache

	Handler check access rule and send headers to protected application

	Protected application sends response to Handler

	Handler forwards the response to user

Then handler will check
SSO cookies for each
HTTP request.

Logout

Default use case:

	User clicks on the logout link in Portal

	Portal destroys session and redirects user on itself with an empty
SSO cookies

	User is redirected on portal and his
SSO cookies is
empty

LemonLDAP::NG is also able to
catch logout request
on protected applications, with different behavior:

	SSO logout: the request is not forwarded to application, only the
SSO session is closed

	Application logout: the request is forwarded to application but
SSO session is not closed

	SSO and Application logout: the request is forwarded to
application and SSO session is closed

After logout process, the user is redirected on portal, or on a
configured URL.

Session expiration

The session expires after 20 hours by default.
This duration can be set in the manager’s Configuration tab (General Parameters > Sessions > Sessions Timeout).

Attention

	Handlers have a session cache, with a default lifetime of 10 minutes.
So for Handlers located on different physical servers than the Portal, a user
with an expired session can still be authorized until the cache
expires.

	Sessions are deleted by a scheduled task. Don’t forget to install
cron files !

Cross Domain Authentication (CDA)

Note

For security reason, a cookie provided for a domain cannot be sent
to another domain. To extend SSO on several domains, a cross-domain
mechanism is implemented in LemonLDAP::NG.

	User owns
SSO cookies on the
main domain (see Login kinematics)

	User tries to access a protected application in a different domain

	Handler does not see
SSO cookies
(because it is not in main domain) and redirects user on Portal

	Portal recognizes the user with its
SSO cookies, and
see he is coming from a different domain

	Portal redirects user on protected application with a token as URL
parameter. The token is linked to a session which contains the real
session ID

	Handler detects URL parameter, gets the real session ID, delete the
token session and creates a
SSO cookies on its
domain, with session ID as value

Authentication, Authorization and Accounting (AAA) mechanisms

Authentication

If a user is not authenticated and attempts to connect to an area
protected by a LemonLDAP::NG compatible Handler, he is redirected to a
portal.

Authentication process main steps are:

	Control asked URL: prevent XSS attacks and bad redirections

	Control existing session: detect SSO session, apply configured
constraints (1 session per user, 1 session per IP, …)

	Extract form info: get login/password, certificate, environment
variable (depending on authentication module)

	Get user info: contact user database to collect attributes

	Ask for second factor if required: TOTP, U2F key, etc…

	Set macros: compute configured macros

	Set groups: request user database to find groups

	Set local groups: compute configured groups

	Authenticate: contact authentication database to check
credentials

	Grant session: check rights to open SSO session

	Store: store user info in session database

	Build cookie: build
SSO cookies with
session ID

	Redirect: redirect user on protected application or on Portal
(applications menu)

LemonLDAP::NG
SSO cookies are
generated by
Apache::Session [http://search.cpan.org/perldoc?Apache::Session],
they are as secure as a 128-bit random cookie. You may use the
securedCookie options
to avoid session hijacking. (since version 1.4.0 you can use SHA256 for
generating safer cookies)

Authorization

Authorization is controlled only by Handlers. An authorization is
defined by:

	An URL pattern (or default to match other URLs)

	An access rule

Note

Authorizations are defined inside a virtualhost and takes effect
only on it. There are no global authorizations except the right to
open a session in the portal.

Access rules values can be:

	accept: all authenticated users can pass

	deny: nobody is welcomed

	skip: all is open!

	unprotect: all is open, but authenticated users are seen as
authenticated

	logout_sso, logout_app, logout_app_sso: catch logout
request

	Perl expression: perl code snippet that returns 0 or 1

Some examples:

	Accept all authenticated users:

	URL pattern: default

	Access rule: accept

	Restrict /admin to administrators group

	URL pattern: ^/admin/

	Access rule: $groups =~ /\badministrators\b/

Tip

\b means start or end of a word in PCRE (Perl Compatible
Regular Expressions)

See
Writing rules and headers
chapter.

Accounting

Logging portal access

Portal produce a notice message in
Web server logs or syslog when a user
authenticates (or fails to authenticate) and logs out.

Logging application access

Handler informs Web server of connected user (parameter
whatToTrace), so you can see user login in Web server access logs.

The real accounting has to be done by the application itself since SSO
logs can not understand transactions.

LemonLDAP::NG can export
HTTP headers
either using a proxy or protecting directly the application.

An HTTP header is defined by:

	A name

	A value

Note

Headers are defined inside a virtualhost and take effect only on
it. There are no global headers.

The header value is a Perl expression, returning a string.

Some examples:

	Send login in Auth-User:

	Name: Auth-User

	Value: $uid

	Send “Lastname, firstname” in Auth-Name:

	Name: Auth-Name

	Value: $sn + ", " + $gn

See
Writing rules and headers
for more.

Main features

Full access control

LL::NG is a web single-sign-on system, but unlike some systems it can
manage rights on applications based on regular expressions on URL.

Easy to customize

LL::NG is designed using Model–View–Controller software
architecture [http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller],
so you just have to
change HTML/CSS files to
customize the portal.

Easy to integrate

Integrating applications in
LL::NG is easy since its dialogue with applications is based on
customizable HTTP headers.

Unifying authentications (Identity Federation)

LL::NG can easily exchange with other authentication systems by using
SAML, OpenID or CAS protocoles. It may be the backbone of a
heterogeneous architecture. LL:NG can be set as Identity provider,
Service Provider or Protocol Proxy
(LL::NG as federation protocol proxy).

Its SOAP API can also be used to dialogue directly with your custom
applications.

Sessions

Session explorer

LL::NG Manager has a session explorer module that can be used to browse
opened sessions:

	by users

	by IP (IPv4 and IPv6)

	by double IP (sessions opened by the same user from multiple
computers)

	by date

It can be used to delete a session

Session restrictions

By default, a user can open several
sessions. LL::NG can restrict
the following:

	Allow only one session per user

	Allow only one IP address per user

	Allow only one user per IP address

Those capabilities can be used simultaneously or separately.

Double cookie

LL::NG can be configured to provides
2 cookies:

	one secured (SSL only) for sensitive applications

	one unsecured for other applications

So that if the http cookie is stolen, sensitive applications remain secured.

Notifications

LL::NG can be used to notify users with a message when authenticating. This can be used to
inform of a change in access rights, the publication of a new IT charter, etc. (See
notifications for more details)

Quick start tutorial

Attention

This tutorial will guide you into a minimal
installation and configuration procedure. You need some prerequisites:

	Root access to a Debian, Ubuntu, CentOS or RHEL test system

	A web browser

	A cup of coffee (or tea, we are open minded)

Installation

Debian / Ubuntu

apt install apt-transport-https
wget -O - https://lemonldap-ng.org/_media/rpm-gpg-key-ow2 | apt-key add -
echo "deb https://lemonldap-ng.org/deb stable main" > /etc/apt/sources.list.d/lemonldap-ng.list
apt update
apt install lemonldap-ng

CentOS / RHEL

curl https://lemonldap-ng.org/_media/rpm-gpg-key-ow2 > /etc/pki/rpm-gpg/RPM-GPG-KEY-OW2
echo '[lemonldap-ng]
name=LemonLDAP::NG packages
baseurl=https://lemonldap-ng.org/redhat/stable/$releasever/noarch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-OW2' > /etc/yum.repos.d/lemonldap-ng.repo
yum update
yum install epel-release
yum install lemonldap-ng
If you use SELinux
yum install lemonldap-ng-selinux

SSO domain configuration

LemonLDAP::NG needs all its components to be served on the same DNS domain.

If you can edit your /etc/hosts file or have access to a DNS server, check Using your own domain, if you have no way to modify your DNS configuration, check Using nip.io (or other DNS wildcard services).

Using your own domain

The defaut SSO domain is example.com. You can keep it for your tests
or change it, for example for mydomain.com:

sed -i 's/example\.com/mydomain.com/g' \
 /etc/lemonldap-ng/* /var/lib/lemonldap-ng/conf/lmConf-1.json \
 /etc/nginx/conf.d/* \
 /etc/httpd/conf.d/* \
 /etc/apache2/sites-available/*

In order to be able to test, update your DNS or your local hosts
file to map these names to the SSO server IP:

	auth.mydomain.com

	manager.mydomain.com

	test1.mydomain.com

	test2.mydomain.com

For example, you can enter the following command on your local computer:
(adjust according to your server IP and test domain)

echo "192.168.1.30 auth.mydomain.com manager.mydomain.com test1.mydomain.com test2.mydomain.com" >> /etc/hosts

Using nip.io (or other DNS wildcard services)

If you cannot edit /etc/hosts or your DNS zone, don’t give up yet, you can use services such as nip.io [http://nip.io/], xip.io [http://xip.io/], sslip.io [https://sslip.io] or others.

For example, if your server IP is 192.168.12.13, you can use 192-168-12-13.nip.io as your SSO domain:

sed -i 's/example\.com/192-168-12-13.nip.io/g' \
 /etc/lemonldap-ng/* /var/lib/lemonldap-ng/conf/lmConf-1.json \
 /etc/nginx/conf.d/* \
 /etc/httpd/conf.d/* \
 /etc/apache2/sites-available/*

Warning

nip.io, xip.io or any DNS wildcard services mentionned in this section are not affiliated with the LemonLDAP::NG project in any way. These services will receive DNS requests that will allow them to know your test server’s IP address. If this is an issue for you, do not use these services.

Run

Starting services

Debian / Ubuntu

Enable the Nginx virtualhosts and restart the web server and LemonLDAP::NG server to apply the configuration changes

cd /etc/nginx/sites-enabled
ln -s ../sites-available/*nginx* .
systemctl restart lemonldap-ng-fastcgi-server
systemctl restart nginx

CentOS / RHEL

Enable and start httpd

systemctl enable httpd
systemctl start httpd

Open SSO session

Go on http://auth.mydomain.com and log with one of the demonstration
account.

	Login

	Password

	Role

	rtyler

	rtyler

	user

	msmith

	msmith

	user

	dwho

	dwho

	administrator

Access protected application

Try http://test1.mydomain.com or http://test2.mydomain.com

Edit configuration

Log with the dwho account and go on http://manager.mydomain.com

Platforms overview

LLNG is able to use different web servers to provide its services. Here
is a resume of all possibilities. We recommend:

	For installations subject to small/medium load: Nginx with our
default FastCGI server, or Apache (with mpm_prefork engine)

	For heavily loaded installation: Nginx. The choice for
FastCGI server engine depends on the behavior of your users

Portal/Manager installation

Since 2.0, both portal and manager are native FastCGI / PSGI Plack based
applications. They can be powered by any FastCGI / PSGI compatible web
servers. Some examples:

	

	Apache

	
	Nginx

	Plack servers family

	Engines

	mod_fcgid [https://httpd.apache.org/mod_fcgid/] or mod_fastcgi [http://www.fastcgi.com/]

	
	FastCGI/uWSGI server

	Any Plack HTTP server [https://plackperl.org] (see our doc)

	Link with webserver process

	External processes managed by webserver (default)

	External LLNG serve

	External LLNG server

	Inside

Application protection overview

Applications can be protected:

	by a LLNG handler

	by themselves if they can dial with a supported protocol (SAML,
OpenID-Connect,…)

To protect applications with handler, LLNG can be used in two mode:

	Direct Application Mode : LLNG handler is an embedded application.
Handler must be installed on application Web Server

	ReverseProxy Mode : applications are hidden behind a ReverseProxy
which provides the required LLNG handler

Handler integration

Direct Application Mode

LLNG handlers can be installed on the following web servers:

	

	Apache

	Nginx

	Plack servers family

	Node.js

	Addon needed

	ModPerl

	
	
	Express

	LLNG integration in webserver

	Inside

	Separate process: External LLNG FastCGI/uWSGI servers (auth_request)

	Inside

	Inside [https://github.com/LemonLDAPNG/node-lemonldap-ng-handler#express-app]

ReverseProxy Mode

	

	Apache

	Nginx

	LLNG integration in ReverseProxy webserver

	Inside

	Separate process: External LLNG FastCGI/uWSGI servers

External servers for Nginx

Nginx supportes natively FastCGI and uWSGI protocoles.

Therefore, LLNG services can be provided by compatible external servers.

Tip

FastCGI or uWSGI server(s) can be installed on separate hosts.
Also you can imagine a global cloud-FastCGI/uWSGI-service for all your
Nginx servers. See more at
SSO as a service (SSOaaS).

FastCGI

By default, LLNG provides a Plack based FastCGI server able to afford
all LLNG services using
FCGI [https://metacpan.org/pod/Plack::Handler::FCGI] engine.

However, you can use some other FastCGI server engines:

	AnyEvent::FCGI [https://metacpan.org/pod/Plack::Handler::AnyEvent::FCGI]

	FCGI::EV [https://metacpan.org/pod/Plack::Handler::FCGI::EV]

	FCGI::Engine [https://metacpan.org/pod/Plack::Handler::FCGI::Engine]

	FCGI::Engine::ProcManager [https://metacpan.org/pod/Plack::Handler::FCGI::Engine::ProcManager]

	FCGI::Async [https://metacpan.org/pod/Plack::Handler::FCGI::Async]

	LLNG FastCGI server for
Node.js [https://github.com/LemonLDAPNG/node-lemonldap-ng-handler#nginx-authorization-server](*)

Danger

(*) LLNG Node.js handler can only be used as Nginx
`auth_request` server, not to serve Portal or Manager

uWSGI

	uWSGI server (with uwsgi PSGI plugin, see
Advanced PSGI usage)

Installation

	Before installation
	Prerequisites and dependencies

	Download

	Upgrade from 2.0.x to 2.0.y

	Upgrade from 1.9 to 2.0

	Main installation
	Installation from the tarball

	Installation on Debian/Ubuntu with packages

	Installation on Red Hat/CentOS

	Installation on Suse Linux

	LemonLDAP::NG in Docker

	Node.js handler

	After installation
	Deploy Nginx configuration

	Deploy Apache configuration

	Deploy LemonLDAP::NG on a Plack server

Before installation

	Prerequisites and dependencies

	Download

	Upgrade from 2.0.x to 2.0.y

	Upgrade from 1.9 to 2.0

Prerequisites and dependencies

Web Server

To use LemonLDAP::NG, you have the choice of the Web Server :

	Nginx

	Apache 2

	Any FastCGI or uWSGI compatible Web Server (Portal and manager
only)

For Apache2, you can use all workers mpm-worker, mpm-prefork and
mpm-event. Mpm-worker works faster and LemonLDAP::NG use the thread
system for best performance but since Apache-2.4, mod_perl seems
unstable in this configuration. If you have to use mpm-prefork (for
example if you use PHP), LemonLDAP::NG will work anyway.

[image: image0]

Perl

Note

Here the list of Perl modules used in LemonLDAP::NG. Core modules
must be installed on the system. Other modules are required only if you
plan to use related features.

Core

	Apache::Session

	Cache::Cache

	Clone

	Config::IniFiles

	Convert::PEM

	Cookie::Baker::XS

	Crypt::OpenSSL::Bignum

	Crypt::OpenSSL::RSA

	Crypt::OpenSSL::X509

	Crypt::Rijndael

	Crypt::URandom

	DBI

	Digest::HMAC_SHA1

	Digest::MD5

	Digest::SHA

	Email::Sender

	GD::SecurityImage

	HTML::Template

	HTTP::Headers

	HTTP::Request

	IO::String

	JSON

	LWP::UserAgent

	LWP::Protocol::https

	MIME::Base64

	MIME::Entity

	Mouse

	Net::LDAP

	Plack

	Regexp::Assemble

	Regexp::Common

	SOAP::Lite (optional)

	String::Random

	Text::Unidecode (Since LemonLDAP::NG 2.0.5)

	Unicode::String

	URI

	URI::Escape

Deprecated features

	Old notifications format:

	XML::LibXML

	XML::LibXSLT

	OpenID 2.0:

	Net::OpenID::Server

	Net::OpenID::Consumer

SAML2

	Lasso [http://lasso.entrouvert.org/]

	GLib

	XML::Simple

Second factor

	Crypt::U2F::Server::Simple (U2F keys)

	Convert::Base32 (TOTP)

Specific authentication backends

	Facebook:

	Net::Facebook::Oauth2

	Kerberos:

	GSSAPI

	PAM:

	Authen::PAM

	Radius:

	Authen::Radius

	Twitter:

	Net::OAuth

	WebID:

	Web::ID

SMTP & Reset password/certificate by mail

	Email::Sender

	String::Random

	Net::SMTP

	Net::SSLeay

	DateTime::Format::RFC3339

Unit tests

	Authen::U2F::Tester

	Crypt::U2F::Server

	Test::MockObject

	Test::Output

	Test::POD

	Time::Fake

	YAML

Other

	Jquery (javascript framework) is included in tarball and RPMs, but is
a dependency on Debian official releases

	Cache::Memcached : used by SecureToken handler

Install dependencies on your system

Danger

You don’t need to install them if you use LL::NG packages.
With apt or yum, dependencies will be automatically
installed.

APT

Perl dependencies:

apt install libapache-session-perl libcache-cache-perl libclone-perl libconfig-inifiles-perl libconvert-pem-perl libcrypt-openssl-bignum-perl libcrypt-openssl-rsa-perl libcrypt-openssl-x509-perl libcrypt-rijndael-perl libdbi-perl libdigest-hmac-perl libemail-sender-perl libgd-securityimage-perl libhtml-template-perl libio-string-perl libjson-perl libmime-tools-perl libmouse-perl libnet-ldap-perl libplack-perl libregexp-assemble-perl libregexp-common-perl libsoap-lite-perl libstring-random-perl libunicode-string-perl liburi-perl libwww-perl libxml-simple-perl libxml-libxslt-perl libcrypt-urandom-perl libtext-unidecode-perl libcookie-baker-xs-perl

For Apache:

apt install apache2 libapache2-mod-fcgid libapache2-mod-perl2

For Nginx:

apt install nginx nginx-extras

YUM

Tip

You need EPEL [http://fedoraproject.org/wiki/EPEL/]
repository. See below how to enable this repository:
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse

Perl dependencies:

yum install perl-Apache-Session perl-Cache-Cache perl-Clone perl-Config-IniFiles perl-Convert-PEM perl-Crypt-OpenSSL-RSA perl-Crypt-OpenSSL-X509 perl-Crypt-Rijndael perl-Digest-HMAC perl-Digest-SHA perl-GD-SecurityImage perl-HTML-Template perl-IO-String perl-JSON perl-LDAP perl-Mouse perl-Plack perl-Regexp-Assemble perl-Regexp-Common perl-SOAP-Lite perl-String-Random perl-Unicode-String perl-version perl-XML-Simple perl-Crypt-URandom perl-Email-Sender

For Apache:

yum install httpd mod_fcgid mod_perl

For Nginx:

yum install nginx

Attention

As you need a recent version of Nginx, the best is to
install Nginx official
packages [https://www.nginx.com/resources/wiki/start/topics/tutorials/install/#official-red-hat-centos-packages].

Download

Release notes

Release notes for latest version:
https://projects.ow2.org/view/lemonldap-ng/lemonldap-ng-2-0-9-is-out

Go on https://projects.ow2.org/bin/view/lemonldap-ng/ for older
versions.

See also upgrade notes.

Packages and archives

Stable version (2.0.9)

Tarball

	Tarball [https://release.ow2.org/lemonldap/lemonldap-ng-2.0.9.tar.gz]

RPM

Tip

You can:
- Use our own YUM repository.
- Download them here and install pre-required packages.

RHEL/CentOS 7

	RPM
bundle [https://release.ow2.org/lemonldap/lemonldap-ng-2.0.9_el7.rpm.tar.gz]

	Source
RPM [https://release.ow2.org/lemonldap/lemonldap-ng-2.0.9-1.el7.src.rpm]

RHEL/CentOS 8

	RPM
bundle [https://release.ow2.org/lemonldap/lemonldap-ng-2.0.9_el8.rpm.tar.gz]

	Source
RPM [https://release.ow2.org/lemonldap/lemonldap-ng-2.0.9-1.el8.src.rpm]

Debian

Tip

You can:

	Use
packages provided by Debian.

	Use
our own Debian repository.

	Download them here and
install pre-required packages.

	DEB
bundle [https://release.ow2.org/lemonldap/lemonldap-ng-2.0.9_deb.tar.gz]

Docker

See https://hub.docker.com/r/coudot/lemonldap-ng/

docker pull coudot/lemonldap-ng

Nightly builds from master branch

Debian repository of master branch, rebuilt every night:
http://lemonldap-ng.ow2.io/lemonldap-ng/

Older versions

You can find all versions on OW2
releases [https://release.ow2.org/lemonldap/].

Contributions

See https://github.com/LemonLDAPNG

Git repository

See https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng

git clone git@gitlab.ow2.org:lemonldap-ng/lemonldap-ng.git

Upgrade from 2.0.x to 2.0.y

Please apply general caution as you would with any software: have
backups and a rollback plan ready!

Known issues

Upgrading from 2.0.0 or 2.0.1 to later versions

If you have installed LemonLDAP::NG from official RPMs, you
may run into bug #1757 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1757] and lose your
Apache configuration files while updating from LemonLDAP::NG 2.0.0 or 2.0.1 to
later versions. Please backup your /etc/httpd/conf.d/z-lemonldap-ng-*.conf
files before the update.

Known regressions in the latest released version

None

2.0.12

Client Credential sessions missing expiration time

If you started using Client Credential grants in 2.0.11, you may have encountered
issue 2481 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2481].

Because of this bug, the created sessions may never be purged by the purgeCentralCache script.

In order to detect these sessions, you can run the following command:

	::
	lemonldap-ng-sessions search –where _session_kind=SSO –select _session_id –select _utime | jq -r ‘. | map(select(._utime == null)) | map(._session_id) | join (“n”)’

This will output a list of SSO sessions with no expiration time.

Review them manually using

lemonldap-ng-sessions get <session_id>

You can then remove them with

lemonldap-ng-sessions delete <session_id> <session_id> <etc.>

Brute-force protection plugin may cause duplicate persistent sessions

Because of bug #2482 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2482] , some users may notice that the persistent session database is filling with duplicate sessions. Some examples include:

	An uppercase version of the regular persistent session (dwho vs DWHO)

	An unqualified version (dwho vs dwho@idp.com)

This bug was fixed in 2.0.12, but administrators are advised to clean up their persistent session database to remove any duplicate persistent sessions remaining after the upgrade.

2.0.11

Portal templates changes

If you created your own skin and modified some template files, you may need to update them.
No change is required if you are using the default bootstrap theme.

A new plugin has been introduced, in beta version: FindUser. It requires a modification of login.tpl to include finduser.tpl.

2.0.10

Security

A vulnerability affecting LemonLDAP::NG installations has been found out when ALL following criteria apply:

	Your handler server uses Nginx

	Your virtual host configuration contains per-URL skip or unprotect access rule

In this situation, you have to update your LUA configuration file like /etc/nginx/nginx-lua-headers.conf. See also issue 2434 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2434].

Other minor security fixes:

	It is now possible to hide sessions identifier in Manager (parameter displaySessionId). See also issue 2350 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2350].

	Second factor management by end user now requires safer conditions. See also issue 2332 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2332], issue 2337 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2337] and issue 2338 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2338].

Main changes

	New dependency: IO::Socket::Timeout

	TOTP check tolerates forward AND backward clock drift (totp2fRange)

	Avoid assignment in expressions option is disabled by default

	RHEL/CentOS SELinux users should install the new lemonldap-ng-selinux package to fix an issue with the new default cache directory [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2401]

	If you use Mattermost Team Edition with OpenID Connect, you need to set the id claim type to Integer

	BruteForceProtection plugin now prevents authentication on backend if an account is locked

	In the Manager API, postLogoutRedirectUri is now returned and consumed as an array [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2347]

	We fixed a bug that caused SAML sessions to be created and never deleted, you should check your session databases for sessions that have "_session_kind": "ISAML" but no _utime. You can safely delete SAML sessions with no _utime during the upgrade.

Portal templates changes

If you created your own skin and modified some template files, you may need to update them, see below if they have been modified.

No change is required if you are using the default bootstrap theme.

2FA manager

In 2fregisters.tpl you need to add the remove2f class to the button that triggers second factor removal:

- <span device='<TMPL_VAR NAME="type">' epoch='<TMPL_VAR NAME="epoch">' class="btn btn-danger" role="button">
+ <span device='<TMPL_VAR NAME="type">' epoch='<TMPL_VAR NAME="epoch">' class="btn btn-danger remove2f" role="button">

Or, better yet, integrate the changes in 2fregisters.tpl and skin.min.js into your custom theme to benefit from the new 2F removal confirmation dialog [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2438]

Checkboxes

A CSS change has been done in styles.css to avoid checkbox labels overflow. See issue 2301 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2301].

The form-check-input class is missing in register.tpl and notifinclude.tpl. See issue 2374 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2374].

Password checker

Input id values have been modified in mail.tpl to work with password checker. See issue 2355 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2355].

Tables caption

Tables captions have been added in sessionArray.tpl. See issue 2356 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2356].

Stay connected

A small change is required in checklogins.tpl for issue 2365 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2365].

Other changes needed in 2fchoice.tpl, ext2check.tpl, totp2fcheck.tpl, u2fcheck.tpl and utotp2fcheck.tpl for issue 2366 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2366].

Mails

The HTML alt attribute has been added on img in all mail_*.tpl. See issue 2422 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2422].

2.0.9

	Bad default value to display OIDC Consents tab has been fixed.
The default value is now: $_oidcConsents && $_oidcConsents =~ /\w+/

	Some user log messages have been modified, check logs documentation
(see also #2244 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2244])

	SAML SOAP calls are now using text/xml instead of application/xml as the MIME Content Type, as required by the SOAP standard [https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383526]

	Incremental lock times values can now be set in BruteForceProtection plugin through Manager.
It MUST be a list of comma separated values. Default values are 5, 15, 60, 300, 600

	This version is not compatible with Mattermost Team Edition

Cookie issues with Chrome

This release fixes several issues related to the change in SameSite cookie
policy for Google Chrome users. The new default value of the SameSite
configuration parameter will set SameSite to Lax unless you are using SAML,
in which case it will be set to None.

This means that from now on, any LemonLDAP::NG installation using SAML must be
served over HTTPS, as SameSite None value requires the Secure flag in cookie.

Change in default cache directory

The default config/session cache directory has been moved from /tmp to
/var/cache/lemonldap-ng in order to avoid issues with cache purges [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2254] when using
Systemd. This change is only applied to new installations. If your
installation is experiencing cache purge issues, you need to manually change
your existing localSessionStorageOptions/cache_root parameter from /tmp
to /var/cache/lemonldap-ng. Be sure to create this directory on your
file system before modifying your configuration.

If you are using SELinux, you also need to run the following commands

semanage fcontext --add -t httpd_cache_t -f a '/var/cache/lemonldap-ng(/.*)?'
restorecon -R /var/cache/lemonldap-ng/

Required changes in NGINX handler rules (CVE-2020-24660)

We discovered a vulnerability that affects LemonLDAP::NG installations when ALL of the following criteria apply:

	You are using the LemonLDAP::NG Handler to protect applications

	Your handler server uses Nginx

	Your virtual host configuration contains per-URL access rules based on
regular expressions in addition to the built-in default access rule.

Note

You are safe from this vulnerability if your virtualhost only uses a regexp-based rule to trigger logout

If you are in this situation, you need to modify all your handler-protected
virtualhosts by making the following change:

	Replace fastcgi_param X_ORIGINAL_URI $request_uri by fastcgi_param X_ORIGINAL_URI $original_uri if you are using FastCGI

	Replace uwsgi_param X_ORIGINAL_URI $request_uri by uwsgi_param X_ORIGINAL_URI $original_uri if you are using uWSGI

	Right after auth_request /lmauth;, add the following line

set $original_uri uriis_args$args;

You can check the Manage virtual hosts page for more information

LDAP certificate validation (CVE-2020-16093)

LDAP server certificates were previously not verified by default when using secure transports (LDAPS or TLS), see CVE-2020-16093 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2250]. Starting from this release, certificate validation is now enabled by default, including on existing installations.

If you have configured your CA certificates incorrectly, LemonLDAP::NG will now start complaining about invalid certificates. You may temporarily disable it again with the following command

/your/path/to/lemonldap-ng-cli set ldapVerify none

If you use LDAP as a configuration storage, and want to temporarily disable certificate validation, you must make the following addition to /etc/lemonldap-ng/lemonldap-ng.ini

[configuration]
...
ldapVerify = none

If you use LDAP as a session backend, you are strongly encouraged to also upgrade corresponding Apache::Session modules (Apache::Session::LDAP or Apache::Session::Browseable). After this upgrade, if you want to temporarily disable certificate validation, you can add the following parameter to the list of Apache::Session module options:

	key: ldapVerify

	value: none

Please note that it is HIGHLY recommended to set certificate validation to require when contacting LDAP servers over a secure transport to avoid man-in-the-middle attacks.

2.0.8

	New dependency: Perl module Time::Fake is now required to run unit
test and build packages, but should not be mandatory to run the
software.

	Nginx configuration: some changes are required to allow IPv6, see
#2152 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2152]

	Option singleSessionUserByIP was removed, see
#2159 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2159]

	A memory leak was found in perl-fcgi with Perl < 5.18, a workaround
is possible with Apache and llng-fastcgi-server, see
#1314 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1314]

	With Apache: set FcgidMaxRequestsPerProcess 500 in portal
virtual host

	With llng-fastcgi-server: set PM_MAX_REQUESTS=500 in
llng-fastcgi-server service configuration

	Cookie SameSite value: to avoid problems with recent browsers,
SAML POST binding, LLNG cookies are now tagged as
“SameSite=None”. You can change this value using manager,
“SameSite=Lax” is best for installations without federations.
Important note: if you’re using an unsecured connection (http://
instead of https://), “SameSite=None” will be ignored by browsers
and users that already have a valid session might be prompted to
login again.

	OAuth2.0 Handler: a VHost protected by the OAuth2.0 handler will now
return a 401 when called without an Access Token, instead of
redirecting to the portal, as specified by
RFC6750 [https://tools.ietf.org/html/rfc6750]

	If you encounter the following issue:

AH01630: client denied by server configuration: /usr/share/lemonldap-ng/manager/api/api.fcgi

when trying to access the portal. It probably comes from incorrect
Apache configuration. Remove the (optional and disabled by default)
manager API config:

rm /etc/httpd/conf.d/z-lemonldap-ng-api.conf && systemctl reload httpd

2.0.7

	Security:

	#2040 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2040]:
Configuration of a redirection URI for an OpenID Connect Relying
Party is now mandatory, as defined in the specifications. If you
save your configuration, you will have an error if some of your RP
don’t have a redirect URI configured.

	#1943 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1943]
/
CVE-2019-19791 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19791]:
along with the patch provided in 2.0.7 in
Lemonldap/NG/Common/PSGI/Request.pm, Apache rewrite rule must
be updated to avoid an unprotected access to REST services:

portal-apache2.conf

RewriteCond "%{REQUEST_URI}" "!^/(?:(?:static|javascript|favicon).*|.*\.fcgi(?:/.*)?)$"
RewriteRule "^/(.+)$" "/index.fcgi/$1" [PT]

manager-apache2.conf

RewriteCond "%{REQUEST_URI}" "!^/(?:static|doc|lib|javascript|favicon).*"
RewriteRule "^/(.+)$" "/manager.fcgi/$1" [PT]

	Other:

	Option checkTime was enabled by default in
lemonldap-ng.ini, this let the portal check the configuration
immediately instead of waiting for configuration cache expiration.
You can keep this option enabled unless you need strong
performances.

	Removed parameters:

	samlIdPResolveCookie

2.0.6

	Option was added to display generate password box in
password reset by mail plugin. If you use this
feature, you must enable this option, which is disabled by default.

	If you use the default _whatToTrace macro and a case insensitive
authentication backend, then a user can generate several persistent
sessions for the same login (see issue
1869 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1869]).
This can lead to a security bug if you enabled 2FA, which rely on
data stored in the persistent session. To fix this, either choose a
unique attribute for _whatToTrace, either force lower case in your
macro:

$_auth eq 'SAML' ? lc($_user.'@'.$_idpConfKey) : $_auth eq 'OpenIDConnect' ? lc($_user.'@'.$_oidc_OP) : lc($_user)

	On CentOS 7 / RHEL 7, a system upgrade breaks ImageMagick, which is
used to display captchas (see
#1951 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1951]).
To fix this, you can run the following commands:

yum install -y urw-base35-fonts-legacy
sed 's,/usr/share/fonts/default/Type1/,/usr/share/X11/fonts/urw-fonts/,g' -i /etc/ImageMagick/type-ghostscript.xml

2.0.5

	The Text::Unidecode perl module becomes a requirement (it will be
automatically installed if you upgrade from from the deb or RPM
repositories)

	CAS logout starts validating the service= parameter, but only if you
use the CAS Access control policy. The URL sent in the service=
parameter will be checked against
known CAS applications,
Virtual Hosts, and
trusted domains. Add
your target domain to trusted domains if you suddenly start having
“Invalid URL” messages on logout

	Improvements in cryptographic functions: to take advantage of them,
you must change the encryption key of LemonLDAP::NG (see
CLI example).

	Debian packaging: FastCGI / uWsgi servers require llng-lmlog.conf and
llng-lua-headers.conf. Those configuration files are now provided by
lemonldap-ng-handler package and installed in /etc/nginx/snippets
directory.

Upgrade from 1.9 to 2.0

Attention

2.0 is a major release, lot of things have been changed.
You must read this document before upgrade.

Upgrade order from 1.9.*

As usual, if you use more than 1 server and don’t want to stop SSO
service AND IF YOU HAVE NO INCOMPATIBILITY MENTIONED IN THIS DOCUMENT,
upgrade must be done in the following order:

	servers with handlers only;

	portal servers (all together if your load balancer is stateless
(user or client IP) and if users use the menu);

	manager server

Attention

You must revalidate your configuration using the
manager.

Installation

Attention

French documentation is no more available. Only English
version of this documentation is maintained now.

This release of LL::NG requires these minimal versions of GNU/Linux
distributions:

	Debian 9 (stretch)

	Ubuntu 16.04 LTS

	CentOS 7

	RHEL 7

For SAML features, we require at least Lasso 2.5 and we recommend Lasso
2.6.

Configuration

	lemonldap-ng.ini requires some new fields in portal section.
Update yours using the one given installed by default. New requires
fields are:

	staticPrefix (manager and portal): the path to static
content

	templateDir (manager and portal): the path to templates
directory

	languages (manager and portal): accepted languages

	Portal skins are now in /usr/share/lemonldap-ng/portal/templates.
See skin customization to
adapt your templates.

	User module in authentication parameters now provides a “Same as
authentication” value. You must revalidate it in the manager since
all special values must be replaced by this (Multi, Choice, Proxy,
Slave, SAML, OpenID,…)*

	“Multi” doesn’t exist anymore: it is replaced by
Combination, a more powerful module.

	Apache and Nginx configurations must be updated to use FastCGI portal

	URLs for mail reset and register pages have changed, you must update
configuration parameters. For example:

mailUrl => 'http://auth.example.com/resetpwd',
registerUrl => 'http://auth.example.com/register',

	Option trustedProxies was removed, you must now configure your
Web Server to manage X-Forwarded-For header, see
how to run LL::NG behind a reverse proxy.

Attention

Apache mod_perl has got lot of troubleshooting problems
since 2.4 version (many segfaults,…), especially when using MPM
worker or MPM event. That’s why LL::NG doesn’t use anymore
ModPerl::Registry: all is now handled by FastCGI (portal and manager),
except for Apache2 Handler.

For Handlers, it is now recommended to migrate to Nginx, but Apache
2.4 is still supported with MPM prefork.

Configuration refresh

Now portal has the same behavior than handlers: it looks to
configuration stored in local cache every 10 minutes. So it has to be
reload like every handler.

Attention

If you want to use reload mechanism on a portal only
host, you must install a handler in Portal host to be able to refresh
local cache. Include handler-nginx.conf or handler-apache2.conf
for example

LDAP connection

Now LDAP connections are kept open to improve performances. To allow
that, LL::NG requires an anonymous access to LDAP RootDSE entry to check
connection.

Kerberos or SSL usage

	A new Kerberos authentication backend has been
added since 2.0. This module solves many Kerberos integration
problems (usage in conjunction with other backends, better error
display,…). However, you can retain the old integration manner
(using Apache authentication module).

	For SSL, a new Ajax option can be
used in the same idea: so SSL can be used in conjunction with other
backends.

Logs

	Syslog: logs are now configured in lemonldap-ng.ini file
only. If you use Syslog, you must reconfigure it. See
logs for more.

	Apache2: Portal doesn’t use anymore Apache2 logger. Logs are
always written to Apache error.log but Apache “LogLevel” parameter
has no more effect on it. Portal is now a FastCGI application and
doesn’t use anymore ModPerl. See logs for more.

	If you are running behind a proxy, make sure LemonLDAP::NG can
see the original IP address
of incoming HTTP connections

Security

LLNG portal now embeds the following features:

	CSRF [https://en.wikipedia.org/wiki/Cross-site_request_forgery]
protection (Cross-Site Request Forgery): a token is build for each
form. To disable it, set requireToken to 0 (portal security
parameters in the manager)

	Content-Security-Policy [https://en.wikipedia.org/wiki/Content_Security_Policy]
header: portal build dynamically this header. You can modify default
values in the manager (Général parameters » Advanced parameters »
Security » Content-Security-Policy)

Handlers

	Apache only:

	Apache handler is now Lemonldap::NG::Handler::ApacheMP2 and
Menu is now Lemonldap::NG::Handler::ApacheMP2::Menu

	because of an Apache behaviour change, PerlHeaderParserHandler
must no more be used with “reload” URLs (replaced by
PerlResponseHandler). Any “reload url” that are inside a
protected vhost must be unprotected in vhost rules (protection
has to be done by web server configuration).

	CDA,
ZimbraPreAuth,
SecureToken and
AuthBasic are now
Handler Types. So there is no
more special file to load: you just have to choose “VirtualHost type”
in the manager/VirtualHosts.

	SSOCookie: Since Firefox 60 and
Chrome 68, “+2d, +5M, 12h and so on…” cookie expiration time
notation is no more supported. CookieExpiration value is a number of
seconds until the cookie expires. A zero or negative number will
expire the cookie immediately.

Rules and headers

	hostname() and remote_ip() are no more provided to avoid some name conflicts replaced by `$ENV{}`)

	$ENV{<cgi_variable>} is now available everywhere: see Writing rules and headers

	some variable names have changed. See Variables document

Opening conditions

	Rule and message fields have been swaped. You have to modifiy and
validate again your access rules.

Supported servers

	Apache-1.3 files are not provided now. You can build them yourself by
looking at Apache-2 configuration files

Ajax requests

Before 2.0, an Ajax query launched after session timeout received a 302
code. Now a 401 HTTP code is returned. WWW-Authenticate header
contains: SSO <portal-URL>

SOAP/REST services

	SOAP server activation is now split in 2 parameters
(configuration/sessions). You must set them else SOAP service will be
disabled

	Notifications are now REST/JSON by default. You can force old format
in the manager. Note that SOAP proxy has changed:
http://portal/notifications now.

	If you use “adminSessions” endpoint with “singleSession*” features,
you must upgrade all portals simultaneously

	SOAP services can be replaced by new REST services

Attention

AuthBasic Handler uses now
REST services instead of SOAP.

CAS

CAS authentication module no more use perl CAS client, but our own code.
You can now define several CAS servers in a specific branch in Manager,
like you can define several SAML or OpenID Connect providers.

CAS issuer module has also been improved, you must modify the
configuration of CAS clients to move them from virtual host branch to
CAS client branch.

Developer corner

APIs

Portal has now many REST features and includes an API plugin. See Portal
manpages to learn how to write auth modules, issuers or other features.

Portal overview

Portal is no more a single CGI object. Since 2.0, It is based on
Plack/PSGI and Mouse modules. Little resume

Portal object
 |
 +-> auth module
 |
 +-> userDB module
 |
 +-> issuer modules
 |
 +-> other plugins (notification,...)

Requests are independent objects based on
Lemonldap::NG::Portal::Main::Request which inherits from
Lemonldap::NG::Common::PSGI::Request which inherits from Plack::Request.
See manpages for more.

Handler

Handler libraries have been totally rewritten. If you’ve made custom
handlers, they must be rewritten, see
customhandlers.

If you used self protected CGI, you also need to rewrite them, see
documentation.

Main installation

	Installation from the tarball

	Installation on Debian/Ubuntu with packages

	Installation on Red Hat/CentOS

	Installation on Suse Linux

	LemonLDAP::NG in Docker

	Node.js handler

Installation from the tarball

Get the tarball

Get the tarball from download page. You can also find
on this page the SVN tarball if you want to test latest features.

Attention

The content of the SVN tarball is not the same as the
official tarball. Please see the next chapter to learn how build an
official tarball from SVN files.

Build the tarball from SVN

Either checkout or export the SVN
repository [http://forge.ow2.org/plugins/scmsvn/index.php?group_id=274],
or extract the SVN tarball to get the SVN files on your disk.

Then go to trunk directory:

cd trunk

And run the “dist” target:

make dist

The generated tarball is in the current directory.

Extraction

Just run the tar command:

tar zxvf lemonldap-ng-*.tar.gz

Installation

First check and install the prerequisites.

For full install:

cd lemonldap-ng-*
make configure
make
make test
sudo make install PROD=yes

Note

PROD=yes makes web interface use minified versions of CSS and
JS files.

You can modify location of default storage configuration file in
configure target:

make configure STORAGECONFFILE=/etc/lemonldap-ng/lemonldap-ng.ini

You can choose other Makefile targets:

	Perl libraries install :

	install_libs (all Perl libraries)

	install_portal_libs

	install_manager_libs

	install_handler_libs

	Binaries install :

	install_bin (/usr/local/lemonldap-ng/bin)

	FastCGI server install (required for Nginx)

	install_fastcgi_server (/usr/local/lemonldap-ng/sbin)

	Web sites install :

	install_site (all sites including install_doc_site)

	install_portal_site (/usr/local/lemonldap-ng/htdocs/portal)

	install_manager_site (/usr/local/lemonldap-ng/htdocs/manager)

	install_handler_site (/usr/local/lemonldap-ng/handler)

	Documentation install :

	install_doc_site (/usr/local/lemonldap-ng/htdocs/doc)

	install_examples_site (/usr/local/lemonldap-ng/examples)

You can also pass parameters to the make install command, with this
syntax:

sudo make install PARAM=VALUE PARAM=VALUE ...

Available parameters are:

	ERASECONFIG: set to 0 if you want to keep your configuration
files (default: 1)

	DESTDIR: only for packaging, install the product in a jailroot
(default: “”)

	PREFIX: installation directory (default: /usr/local)

	CRONDIR: Cronfile directory (default:
$PREFIX/etc/lemonldap-ng/cron.d)

	APACHEUSER: user running Apache

	APACHEGROUP: group running Apache

	DNSDOMAIN: Main DNS domain (default: example.com)

	APACHEVERSION: Apache major version (default: 2)

	VHOSTLISTEN: how listen parameter is configured for virtual hosts
in Apache (default: *:80)

	PROD: use minified JS and CSS files

	USEDEBIANLIBS: use Debian packaged JS and CSS files (Note
that this options isn’t yet usable since Debian provides a too
old AngularJS for now: LLNG manager needs at least version 1.4.0)

	USEEXTERNALLIBS: use files from public CDN

	STORAGECONFFILE: make configure target only. Location of default
storage configuration file (default:
/usr/local/lemonldap-ng/etc/lemonldap-ng.ini)

Tip

For Debian/Ubuntu with Apache2, you can use:

make debian-install-for-apache
make ubuntu-install-for-apache

And with Nginx:

make debian-install-for-nginx
make ubuntu-install-for-nginx

See also Debian/Ubuntu installation documentation.

Install cron jobs

LL::NG use cron jobs (or systemd timers) to:

	purge old sessions

	clean Handler cache

To install them on system:

sudo ln -s /usr/local/lemonldap-ng/etc/cron.d/* /etc/cron.d/

or install .timers files in systemd directory (/lib/systemd/system)

DNS

Configure your DNS server to resolve names with your server IP:

	auth.<your domain>: main portal, must be public

	manager.<your domain>: manager, only for adminsitrators

	test1.<your domain>, test2.<your domain>: sample applications

Follow the next steps.

Installation on Debian/Ubuntu with packages

Organization

LemonLDAP::NG provides these packages:

	lemonldap-ng: metapackage, contains no file but dependencies on other
packages

	lemonldap-ng-doc: contains HTML documentation and project docs
(README, etc.)

	lemonldap-ng-fastcgi-server: LL::NG FastCGI server (for Nginx)

	lemonldap-ng-handler: Handler files

	liblemonldap-ng-common-perl: configuration and common files

	liblemonldap-ng-handler-perl: Handler common libraries

	liblemonldap-ng-manager-perl: Manager files

	liblemonldap-ng-portal-perl: Portal files

Get the packages

Official repository

If you run Debian stable, testing or unstable, the packages are directly
installable:

apt-get install lemonldap-ng

Tip

Packages from Debian
repository [http://packages.debian.org/search?keywords=lemonldap-ng]
may not be up to date but are security-maintained by Debian
Security Team [https://security-team.debian.org/] for “stable”
release and LTS team [https://www.debian.org/lts/] for “oldstable”
release. Then if you don’t need some new features or aren’t concerned by
a bug fixed earlier, this is a good choice. You can also use Debian
backports [https://backports.debian.org/] or “testing”/”unstable”
packages, team maintained.
Here is the list of Debian versions [https://lemonldap-ng.org/documentation/#packaged_versions].

Danger

LLNG Ubuntu packages are not in the “universe” but in the
“multiverse”. This means they are not security-maintained. If you use
them, you should follow our security advisories on
lemonldap-ng-users@ow2.org.

LL::NG repository

You can add this repository to have recent packages.

First, make sure your system can install packages from HTTPS
repositories:

apt install apt-transport-https

You will need to trust the following GPG key : [image: image0]

wget -O - https://lemonldap-ng.org/_media/rpm-gpg-key-ow2 | apt-key add -

Then, add the official LL::NG repository

vi /etc/apt/sources.list.d/lemonldap-ng.list

LemonLDAP::NG repository
deb https://lemonldap-ng.org/deb stable main
deb-src https://lemonldap-ng.org/deb stable main

Tip

	Use the oldstable repository to get packages from previous major
version

	Use the testing repository to get packages from next major
version

	Use the 2.0 repository to avoid upgrade to next major version

Finally update your APT cache:

apt update

Manual download

Packages are available on the Download page.

Install packages

Attention

By default packages will require Nginx. If you want to
use Apache2, install it first with mod_perl:

apt install apache2 libapache2-mod-perl2 libapache2-mod-fcgid

With apt

apt install lemonldap-ng

With dpkg

Before installing the packages, install dependencies.

Then:

dpkg -i liblemonldap-ng-* lemonldap-ng*

First configuration steps

Change default DNS domain

By default, DNS domain is example.com. You can change it quick with
a sed command. For example, we change it to ow2.org:

sed -i 's/example\.com/ow2.org/g' /etc/lemonldap-ng/* /var/lib/lemonldap-ng/conf/lmConf-1.json

Upgrade

If you upgraded LL::NG, check all upgrade notes.

DNS

Configure your DNS server to resolve names with your server IP:

	auth.<your domain>: main portal, must be public

	manager.<your domain>: manager, only for adminsitrators

	test1.<your domain>, test2.<your domain>: sample applications

Follow the next steps

File location

	Configuration is in /etc/lemonldap-ng

	LemonLDAP::NG configuration (edited by the Manager) is in
/var/lib/lemonldap-ng/conf/

	All Perl modules are in the VENDOR perl directory (/usr/share/perl5/)

	All Perl scripts/pages are in /var/lib/lemonldap-ng/

	All lemonldap-ng tools are in /usr/share/lemonldap-ng/bin/

	All static content (examples, CSS, images, etc.) is in
/usr/share/lemonldap-ng/

	Apache configuration files are in /etc/lemonldap-ng and linked in
/etc/apache2/sites-available and /etc/nginx/sites-available

Build your packages

You can also get the LemonLDAP::NG archive and make
the package yourself:

tar xzf lemonldap-ng-*.tar.gz
cd lemonldap-ng-*
make debian-packages

Installation on Red Hat/CentOS

Attention

LL::NG requires at least Red Hat/CentOS 7

Organization

LemonLDAP::NG provides packages for Red Hat/Centos 7:

	lemonldap-ng: metapackage, contains no file but dependencies on other
packages

	lemonldap-ng-doc: contains HTML documentation and project docs
(README, etc.)

	lemonldap-ng-conf: contains default configuration (DNS domain:
example.com)

	lemonldap-ng-test: contains sample CGI test page

	lemonldap-ng-handler: contains Apache Handler implementation (agent)

	lemonldap-ng-manager: contains administration interface and session
explorer

	lemonldap-ng-portal: contains authentication portal and menu

	lemonldap-ng-fastcgi-server: FastCGI server needed to use Nginx

	lemonldap-ng-nginx: contains Nginx configuration and dependencies

	lemonldap-ng-uwsgi-app: contains Uwsgi application

	lemonldap-ng-selinux: contains the SELinux policy for httpd

	perl-Lemonldap-NG-Common: CPAN - Shared modules

	perl-Lemonldap-NG-Handler: CPAN - Handler modules

	perl-Lemonldap-NG-Manager: CPAN - Manager modules

	perl-Lemonldap-NG-Portal: CPAN - Portal modules

Danger

The package lemonldap-ng-nginx requires the nginx
community package. If you use openrestry or Nginx plus, you must ignore
this dependency. To do this, download the package and install it with:

rpm --nodeps -i lemonldap-ng-nginx*.rpm

Get the packages

YUM repository

You can add this YUM repository to get recent packages:

vi /etc/yum.repos.d/lemonldap-ng.repo

[lemonldap-ng]
name=LemonLDAP::NG packages
baseurl=https://lemonldap-ng.org/redhat/stable/$releasever/noarch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-OW2

Tip

Replace stable by 2.0 to avoid upgrade to next major
version

You may also need some extras packages, available here:

[lemonldap-ng-extras]
name=LemonLDAP::NG extra packages
baseurl=https://lemonldap-ng.org/redhat/extras/$releasever
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-OW2

Run this to update packages cache:

yum update

Danger

You must also install the EPEL repository for non-core
dependencies. See prerequisites and dependencies
chapter for more.

Manual download

RPMs are available on the Download page.

Package GPG signature

The GPG key can be downloaded here: [image: image0]

Install it to trust RPMs:

curl https://lemonldap-ng.org/_media/rpm-gpg-key-ow2 > /etc/pki/rpm-gpg/RPM-GPG-KEY-OW2

Install packages

With YUM

If the packages are stored in a yum repository:

yum install lemonldap-ng

If you use SELinux
yum install lemonldap-ng-selinux

You can also use yum on local RPMs file:

yum localinstall lemonldap-ng-* perl-Lemonldap-NG-*

With RPM

Before installing the packages, install all dependencies.

You have then to install all the downloaded packages:

rpm -Uvh lemonldap-ng-* perl-Lemonldap-NG-*

Tip

You can choose to install only one component by choosing the
package lemonldap-ng-portal, lemonldap-ng-handler or
lemonldap-ng-manager.

Install the package lemonldap-ng-conf on all server which contains
one of those packages.

First configuration steps

Change default DNS domain

By default, DNS domain is example.com. You can change it quick with
a sed command. For example, we change it to ow2.org:

sed -i 's/example\.com/ow2.org/g' /etc/lemonldap-ng/* /var/lib/lemonldap-ng/conf/lmConf-1.json /etc/nginx/conf.d/* /etc/httpd/conf.d/*

Upgrade

If you upgraded LL::NG, check all upgrade notes.

DNS

Configure your DNS server to resolve names with your server IP:

	auth.<your domain>: main portal, must be public

	manager.<your domain>: manager, only for adminsitrators

	test1.<your domain>, test2.<your domain>: sample applications

Follow the next steps

File location

	Configuration is in /etc/lemonldap-ng

	LemonLDAP::NG configuration (edited by the Manager) is in
/var/lib/lemonldap-ng/conf/

	All Perl modules are in the VENDOR perl directory

	All Perl scripts/pages are in /var/lib/lemonldap-ng/

	All static content (examples, CSS, images, etc.) is in
/usr/share/lemonldap-ng/

Build your packages

If you need it, you can rebuild RPMs:

	Install rpm-build package

	Install all build dependencies (see BuildRequires in
lemonldap-ng.spec)

	Put LemonLDAP::NG tarball in %_topdir/SOURCES

	Edit ~/.rpmmacros and set your build parameters:

%_topdir /home/user/build
%dist .el7
%rhel 7

	Go to %_topdir

	Build:

rpmbuild -ta SOURCES/lemonldap-ng-VERSION.tar.gz

Installation on Suse Linux

Attention

LL::NG requires at least SLES 12 SP1 or
equivalent

Organization

LemonLDAP::NG provides packages for SLES:

	lemonldap-ng: metapackage, contains no file but dependencies on other
packages

	lemonldap-ng-doc: contains HTML documentation and project docs
(README, etc.)

	lemonldap-ng-conf: contains default configuration (DNS domain:
example.com)

	lemonldap-ng-test: contains sample CGI test page

	lemonldap-ng-handler: contains Apache Handler implementation (agent)

	lemonldap-ng-manager: contains administration interface and session
explorer

	lemonldap-ng-portal: contains authentication portal and menu

	lemonldap-ng-fastcgi-server: FastCGI server needed to use Nginx

	perl-Lemonldap-NG-Common: CPAN - Shared modules

	perl-Lemonldap-NG-Handler: CPAN - Handler modules

	perl-Lemonldap-NG-Manager: CPAN - Manager modules

	perl-Lemonldap-NG-Portal: CPAN - Portal modules

Get the packages

Repositories

This manual only refers to SLES 12 SP1. Installation may work on other
platforms, with no guarantee.

Different repositories are necessary for LemonLDAP::NG dependencies:

	Suse official repositories

	2 repositories on openSUSE Build
Service [https://build.opensuse.org/]

	Additional packages available on repository.linagora.org or
lemonldap-ng.org

	Suse SDK repository is advised for building packages (yast2 ->
Software -> Software Repositories -> Add –> Extensions and modules
from Registration Server)

First, make sure the exploitation system is up to date:

zypper update

You can add the openSUSE Build Service repositories with the following
commands:

zypper addrepo http://download.opensuse.org/distribution/leap/42.1/repo/oss/suse/ leap42
zypper addrepo http://download.opensuse.org/repositories/devel:languages:perl/SLE_12/devel:languages:perl.repo
zypper refresh

Accept both signing keys each time.

You can add the additional dependency repository *and* the
LemonLDAP::NG repository with either commands:

zypper addrepo http://lemonldap-ng.org/sles12 lemonldap-sles12-repository
zypper refresh

or

zypper addrepo http://repository.linagora.org/lemonldap-sles12-repository lemonldap-sles12-repository
zypper refresh

Tip

Only packages on SLES 12 SP1 are tested for now.

Manual download

RPMs are available on the Download page.

Package GPG signature

The GPG key can be downloaded here: [image: image0]

Install it to trust RPMs:

rpm --import rpm-gpg-key-ow2

Install packages

With ZYPPER

If the packages are stored in a repository:

zypper install lemonldap-ng

59 new packages to install.
Total download size: 13.5 MiB. Already cached : 0 B. After operation, 30.7 MiB of supplementary disk space will be used.
Continue ? [y/n/? print all options] (y):

You can also use zypper on local RPMs file:

zypper install lemonldap-ng-* perl-Lemonldap-NG-*

With RPM

Before installing the packages, install all dependencies: (you need to
get dependencies from previous repositories)

zypper install apache2 apache2-mod_perl apache2-mod_fcgid perl-ldap perl-XML-SAX perl-XML-NamespaceSupport perl-XML-Simple perl-XML-LibXML perl-Config-IniFiles perl-Digest-HMAC perl-Crypt-OpenSSL-RSA perl-Authen-SASL perl-Unicode-String gd perl-Regexp-Assemble perl-Authen-Captcha perl-Cache-Cache perl-Apache-Session perl-CGI-Session perl-IO-String perl-MIME-Lite perl-SOAP-Lite perl-XML-LibXSLT perl-String-Random perl-Email-Date-Format perl-Crypt-Rijndael perl-HTML-Template perl-JSON perl-Crypt-OpenSSL-X509 perl-Crypt-DES perl-Class-Inspector perl-Test-MockObject perl-Clone perl-Net-CIDR-Lite perl-ExtUtils-MakeMaker perl-CGI perl-CGI-Session perl-HTML-Template perl-SOAP-Lite perl-IPC-ShareLite perl-Error perl-HTML-Parser perl-libwww-perl perl-DBI perl-Cache-Memcached perl-Class-ErrorHandler perl-Convert-PEM perl-Crypt-DES_EDE3 perl-Digest-SHA perl-Env perl-Mouse perl-String-CRC32 perl-Plack perl-Regexp-Common perl-Crypt-OpenSSL-Bignum perl-FCGI-ProcManager

You have then to install all the downloaded packages:

rpm -Uvh lemonldap-ng-* perl-Lemonldap-NG-*

Tip

You can choose to install only one component by choosing the
package lemonldap-ng-portal, lemonldap-ng-handler or
lemonldap-ng-manager.

Install the package lemonldap-ng-conf on all server which contains
one of those packages.

First configuration steps

Enable Apache extensions

These extensions are activated by default on Apache at LemonLDAP
install:

a2enmod perl
a2enmod headers
a2enmod mod_fcgid
a2enmod ssl
a2enmod rewrite
a2enmod proxy
a2enmod proxy_http

If you decide to use SSL, you should also activate the appopriate flag:

sed -i 's/^APACHE_SERVER_FLAGS=.*/APACHE_SERVER_FLAGS="SSL"/' /etc/sysconfig/apache2

Change default DNS domain

By default, DNS domain is example.com. You can change it quick with
a sed command. For example, we change it to ow2.org:

sed -i 's/example\.com/ow2.org/g' /etc/lemonldap-ng/{*.conf,*.ini,for_etc_hosts} /var/lib/lemonldap-ng/conf/lmConf-1

Check Apache configuration and restart:

apachectl configtest
apachectl restart

DNS

Configure your DNS server to resolve names with your server IP:

	auth.<your domain>: main portal, must be public

	manager.<your domain>: manager, only for adminsitrators

	test1.<your domain>, test2.<your domain>: sample applications

Follow the next steps

File location

	Configuration is in /etc/lemonldap-ng

	LemonLDAP::NG configuration (edited by the Manager) is in
/var/lib/lemonldap-ng/conf/

	All Perl modules are in the VENDOR perl directory

	All Perl scripts/pages are in /var/lib/lemonldap-ng/

	All static content (examples, CSS, images, etc.) is in
/usr/share/lemonldap-ng/

Build your packages

If you need it, you can rebuild RPMs:

	Install rpm-build package

	Get the lemonldap source package from repository:

zypper source-install lemonldap-ng
cd /usr/src/packages/
ls SPECS/ SOURCES/

	Install all build dependencies (see BuildRequires in
lemonldap-ng.spec)

	Build:

rpmbuild -ba SPECS/lemonldap-ng.spec

Alternatively, you can use the automatic script
“create-lemonldap-packages.sh”, available in rpm-sles directory in the
lemonldap svn repository.
The automatic script can also generate intermediate dependencies. See
README file in the same directory for more information.

LemonLDAP::NG in Docker

[image: image0]

Presentation

Docker [https://www.docker.com/] allows do run application into
containers.

You can find a Docker image for LemonLDAP::NG in this repository:
https://hub.docker.com/r/coudot/lemonldap-ng/

See also this github project:
https://github.com/LemonLDAPNG/lemonldap-ng-docker

Usage

Prerequisites:

	Add
auth.example.com/manager.example.com/test1.example.com/test2.example.com
to /etc/hosts on the host

echo "127.0.0.1 auth.example.com manager.example.com test1.example.com test2.example.com" | sudo tee -a /etc/hosts

	Map the container port 80 to host port 80 (option -p)

docker run -d -p 80:80 coudot/lemonldap-ng

Then connect to http://auth.example.com with your browser and log in
with dwho/dwho.

Node.js handler

Since version 2.0, a beta Node.js handler is available on
GitHub [https://github.com/LemonLDAPNG/node-lemonldap-ng-handler]
and NPMJS [https://www.npmjs.com/package/lemonldap-ng-handler].

Up-to-date documentation is available on GitHub.

Examples

Important things:

	Rules and headers must be written in javascript for these hosts
(example $uid eq "dwho" becomes $uid === "dwho")

	Multi-lines are not supported in lemonldap-ng.ini

	Virtualhosts handled by node-lemonldap-ng-handler must be explicitly
declared in your lemonldap-ng.ini file in [node-handler]
section (NB: section [handler] isn’t used by node
handler):

[node-handler]

nodeVhosts = test.example.com, test2.example.com

Use it as FastCGI server (application protection only)

FastCGI server

var handler = require('lemonldap-ng-handler');

handler.init({
 configStorage: {
 "confFile": "/path/to/lemonldap-ng.ini"
 }
});

handler.nginxServer({
 "mode": "fcgi", // or "http", default: fcgi
 "port": 9090, // default value
 "ip": 'localhost' // default value
});

Nginx configuration

server {
 #...
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass localhost:9090;

 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";

 # Keep original hostname
 fastcgi_param HOST $http_host;

 # Keep original request (LLNG server will receive /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 include conf/nginx-lua-headers.conf;
 }
}

Use it to protect an express app

// Variables
var express = require('express');
var app = express();
var handler = require('lemonldap-ng-handler');

// initialize handler (optional args)
handler.init({
 configStorage: {
 "confFile":"test/lemonldap-ng.ini"
 }
});

// and load it
app.use(handler.run);

// Then simply use your express app
app.get('/', function(req, res) {
 return res.send('Hello ' + req.headers['Auth-User'] + ' !');
});
app.listen(3000, function() {
 return console.log('Example app listening on port 3000!');
});

After installation

	Deploy Nginx configuration

	Deploy Apache configuration

	Deploy LemonLDAP::NG on a Plack server

Deploy Nginx configuration

FastCGI server

To use Nginx, you must install LemonLDAP::NG FastCGI server or use
llngapp.psgi (provided in examples) with a PSGI server. See
Advanced PSGI usage.

Debian/Ubuntu

apt install lemonldap-ng-fastcgi-server

Enable and start the service :

systemctl enable llng-fastcgi-server
systemctl start llng-fastcgi-server

Red Hat/CentOS

yum install lemonldap-ng-nginx lemonldap-ng-fastcgi-server

Enable and start the service :

systemctl enable llng-fastcgi-server
systemctl start llng-fastcgi-server

Files

With tarball installation, Nginx configuration files will be installed
in /usr/local/lemonldap-ng/etc/, else they are directly in web server
configuration.

Debian/Ubuntu

	Install log format (automatically loaded when linked in this place)

ln -s /etc/lemonldap-ng/nginx-lmlog.conf /etc/nginx/conf.d/llng-lmlog.conf

	Install snippet for vhost configuration files:

ln -s /etc/lemonldap-ng/nginx-lua-headers.conf /etc/nginx/snippets/llng-lua-headers.conf

	Enable sites:

ln -s /etc/nginx/sites-available/handler-nginx.conf /etc/nginx/sites-enabled/
ln -s /etc/nginx/sites-available/manager-nginx.conf /etc/nginx/sites-enabled/
ln -s /etc/nginx/sites-available/portal-nginx.conf /etc/nginx/sites-enabled/
ln -s /etc/nginx/sites-available/test-nginx.conf /etc/nginx/sites-enabled/

Deploy Apache configuration

Note

This step should have been already done if you installed LL::NG
with packages.

Files

Attention

Apache Mod Perl has many issues since 2.4 version with
MPM worker and MPM event. No problem for portal and manager since they
are now handled by FastCGI. If you want to use Apache for Handler,
please switch to MPM prefork, else use Nginx.

With tarball installation, Apache configuration files will be installed
in /usr/local/lemonldap-ng/etc/, else they are in
/etc/lemonldap-ng.

You have to include them in Apache main configuration, for example:

include /usr/local/lemonldap-ng/etc/portal-apache2.conf
include /usr/local/lemonldap-ng/etc/handler-apache2.conf
include /usr/local/lemonldap-ng/etc/manager-apache2.conf
include /usr/local/lemonldap-ng/etc/test-apache2.conf

Tip

	You can also use symbolic links in conf.d or sites-available
Apache directory.

	If you have run the Debian/Ubuntu install command, just use:

a2ensite manager-apache2.conf
a2ensite portal-apache2.conf
a2ensite handler-apache2.conf
a2ensite test-apache2.conf

Modules

You will also need to load some Apache modules:

	mod_rewrite

	mod_perl

	mod_alias

	mod_fcgid

	mod_headers

Tip

With Debian/Ubuntu:

a2enmod fcgid perl alias rewrite headers

Deploy LemonLDAP::NG on a Plack server

Plack [https://metacpan.org/release/Plack] is a powerful engine that
powers many very fast servers [http://plackperl.org/#servers]. LLNG
uses some Plack libraries to run as FastCGI server. So, It can be easily
run on these servers. See also Advanced PSGI usage if you
want to replace LLNG FastCGI server.

Complete example

#!/usr/bin/perl

use Data::Dumper;
use Plack::Builder;

Basic test app
my $testApp = sub {
 my ($env) = @_;
 return [
 200,
 ['Content-Type' => 'text/plain'],
 ["Hello LLNG world\n\n" . Dumper($env)],
];
};

Build protected app
my $test = builder {
 enable "Auth::LemonldapNG";
 $testApp;
};

Build portal app
use Lemonldap::NG::Portal::Main;
my $portal = builder {
 enable "Plack::Middleware::Static",
 path => '^/static/',
 root => '/path/to/portal/htdocs/';
 Lemonldap::NG::Portal::Main->run({});
};

Build manager app
use Lemonldap::NG::Manager;
my $manager = builder {
 enable "Plack::Middleware::Static",
 path => '^/static/',
 root => '/path/to/manager/htdocs/';
 enable "Plack::Middleware::Static",
 path => '^/doc/',
 root => '/path/to/dir/that/contains/"doc"';
 enable "Plack::Middleware::Static",
 path => '^/lib/',
 root => '/path/to/doc/pages/documentation/current/';
 Lemonldap::NG::Manager->run({});
};

Global app
builder {
 mount 'http://test1.example.com/' => $test;
 mount 'http://auth.example.com/' => $portal;
 mount 'http://manager.example.com/' => $manager;
};

Launch it with Starman [https://github.com/miyagawa/Starman] for
example:

$ starman --port 80 --workers 32 llapp.psgi

Configuration first steps

	Configuration overview

	Single Sign On cookie, domain and portal URL

	Redirections

	Exported variables

	Manage virtual hosts

	Sessions

	Command-line tools

Configuration overview

Backends

LemonLDAP::NG configuration is stored in a backend that allows all
modules to access it.

Attention

Note that all LL::NG components must have access:

	to the configuration backend

	to the sessions storage backend

Detailed configuration backends documentation is available
here.

By default, configuration is stored in files, so
access through network is not possible. To allow this, use
SOAP for configuration access, or use a network
service like SQL database or
LDAP directory.

Configuration backend can be set in the
local configuration file, in configuration
section.

For example, to configure the File configuration backend:

[configuration]
type=File
dirName = /usr/local/lemonldap-ng/data/conf

Tip

See
How to change configuration backend to known
how to change this.

Manager

Most of configuration can be done through LemonLDAP::NG Manager (by
default http://manager.example.com).

By default, Manager is protected to allow only the demonstration user
“dwho”.

Attention

This user will not be available anymore if you configure
a new authentication backend! Remember to change the access rule in
Manager virtual host to allow new administrators.

If you can not access the Manager anymore, you can unprotect it by
editing lemonldap-ng.ini and changing the protection parameter:

[manager]

Manager protection: by default, the manager is protected by a demo account.
You can protect it :
* by Apache itself,
* by the parameter 'protection' which can take one of the following
values :
* authenticate : all authenticated users can access
* manager : manager is protected like other virtual hosts: you
have to set rules in the corresponding virtual host
* rule: <rule> : you can set here directly the rule to apply
* none : no protection

Tip

See Manager protection documentation
to know how to use Apache modules or LL::NG to manage access to
Manager.

The Manager displays main branches:

	General Parameters: Authentication modules, portal, etc.

	Variables: User information, macros and groups used to fill SSO
session

	Virtual Hosts: Access rules, headers, etc.

	SAML 2 Service: SAML metadata administration

	SAML identity providers: Registered IDP

	SAML service providers: Registered SP

	OpenID Connect Service: OpenID Connect service configuration

	OpenID Connect Providers: Registered OP

	OpenID Connect Relying Parties: Registered RP

LemonLDAP::NG configuration is mainly a key/value structure, so Manager
will present all keys into a structured tree. A click on a key will
display the associated value.

When all modifications are done, click on Save to store
configuration.

Danger

LemonLDAP::NG will do some checks on configuration and
display errors and warnings if any. Configuration is not saved if
errors occur.

Tip

	Configuration viewer allow some users to edit WebSSO
configuration in Read Only mode.

	You can set and display instance name in Manager menu by editing
lemonldap-ng.ini in [manager] section:

[manager]
instanceName = LLNG_Demo

Manager API

Since 2.0.8, a Manager API is available for:

	Second factors management for users

	OpenID Connect RP management

	SAML SP management

See Manager API
documentation [https://lemonldap-ng.org/manager-api/2.0/].

Attention

To access Manager API, enable the manager-api
virtual host and change the access rule. You can protect the API through
Basic authentication, IP white list or any other condition.

Configuration text editor

LemonLDAP::NG provide a script that allows one to edit configuration
without graphical interface, this script is called lmConfigEditor
and is stored in the LemonLDAP::NG bin/ directory, for example
/usr/share/lemonldap-ng/bin:

	On Debian:

/usr/share/lemonldap-ng/bin/lmConfigEditor

	On CentOS:

/usr/libexec/lemonldap-ng/bin/lmConfigEditor

Tip

This script must be run as root, it will then use the Apache
user and group to access configuration.

The script uses the editor system command, that links to your
favorite editor. To change it:

update-alternatives --config editor

The configuration is displayed as a big Perl Hash, that you can edit:

$VAR1 = {
 'ldapAuthnLevel' => '2',
 'notificationWildcard' => 'allusers',
 'loginHistoryEnabled' => '1',
 'key' => 'q`e)kJE%<&wm>uaA',
 'samlIDPSSODescriptorSingleSignOnServiceHTTPPost' => 'urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST;#PORTAL#/saml/singleSignOn;',
 'portalSkin' => 'pastel',
 'failedLoginNumber' => '5',
 ...
 };

If a modification is done, the configuration is saved with a new
configuration number. Else, current configuration is kept.

Command Line Interface (CLI)

LemonLDAP::NG provide a script that allows one to edit configuration
items in non interactive mode. This script is called
lemonldap-ng-cli and is stored in the LemonLDAP::NG bin/ directory,
for example /usr/share/lemonldap-ng/bin:

	On Debian:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli

	On CentOS:

/usr/libexec/lemonldap-ng/bin/lemonldap-ng-cli

Tip

This script must be run as root, it will then use the Apache
user and group to access configuration.

To see available actions, do:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli help

You can force an update of configuration cache with:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli update-cache

To get information about current configuration:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli info

To view a configuration parameter, for example portal URL:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli get portal

To set a parameter, for example domain:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli set domain example.org

To delete a parameter, for example portalSkinBackground:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli del portalSkinBackground

Tip

Use addKey and delKey actions to manage values of hash configuration parameters

You can use accessors (options) to change the behavior:

	-sep: separator of hierarchical values (by default: /).

	-iniFile: the lemonldap-ng.ini file to use if not default value.

	-yes: do not prompt for confirmation before saving new configuration.

	-cfgNum: the configuration number. If not set, it will use the latest
configuration.

	-force: set it to 1 to save a configuration earlier than latest.

Some examples:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -cfgNum 10 get exportedHeaders/test1.example.com
/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 set notification 1
/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -sep ',' get macros,_whatToTrace

Tip

See other examples.

Apache

Attention

LemonLDAP::NG does not manage Apache
configuration

LemonLDAP::NG ships 3 Apache configuration files:

	portal-apache2.conf: Portal virtual host, with SOAP/REST end
points

	manager-apache2.conf: Manager virtual host

	handler-apache2.conf : Handler declaration, reload virtual hosts

	test-apache2.conf : Example protected virtual hosts

See how to deploy them.

Portal

After enabling any REST/SOAP endpoints in the Manager, you also need to
configure some for of authentication on the corresponding URLs in the
portal-apache2.conf configuration file.

By default, access to those URLs is denied:

REST/SOAP functions for sessions management (disabled by default)
<Location /index.fcgi/adminSessions>
 Order deny,allow
 Deny from all
</Location>

Allowing configuration reload

In order to allow configuration reload from a different server (if your
manager is on a different server or if you are using load-balancing),
you need to edit the access rule in handler-apache2.conf

<Location /reload>
 #CHANGE THIS######
 Require ip 127 ::1
 ###########^^^^^^^
 SetHandler perl-script
 PerlResponseHandler Lemonldap::NG::Handler::ApacheMP2->reload
</Location>

Handler

In order to protect your application VHosts with the LemonLDAP::NG
handler, you need to add these directives:

	Load Handler in Apache memory:

(in a global configuration file)

PerlOptions +GlobalRequest
PerlModule Lemonldap::NG::Handler::ApacheMP2

	Catch error pages:

ErrorDocument 403 http://auth.example.com/lmerror/403
ErrorDocument 404 http://auth.example.com/lmerror/404
ErrorDocument 500 http://auth.example.com/lmerror/500
ErrorDocument 502 http://auth.example.com/lmerror/502
ErrorDocument 503 http://auth.example.com/lmerror/503

Then, to protect a standard virtual host, the only configuration line to
add is:

PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

See test-apache2.conf for a complete example of a protected
application

Nginx

Attention

LemonLDAP::NG does not manage Nginx configuration

LemonLDAP::NG ships 3 Nginx configuration files:

	portal-nginx.conf: Portal virtual host, with REST/SOAP end points

	manager-nginx.conf: Manager virtual host

	handler-nginx.conf : Handler reload virtual hosts

	test-nginx.conf : Example protected application

See how to deploy them.

Danger

LL::NG FastCGI server must be
enabled and started separately.

Portal

After enabling any REST/SOAP endpoints in the Manager, you also need to
configure some for of authentication on the corresponding URLs in the
portal-nginx.conf configuration file.

By default, access to those URLs is denied:

location ~ ^/index.psgi/adminSessions {
 fastcgi_pass llng_portal_upstream;
 deny all;
}

Allowing configuration reload

In order to allow configuration reload from a different server (if your
manager is on a different server or if you are using load-balancing),
you need to edit the access rule in handler-nginx.conf

location = /reload {

 ## CHANGE THIS #
 allow 127.0.0.1;
 ######^^^^^^^^^#

 deny all;

 # FastCGI configuration
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:__FASTCGISOCKDIR__/llng-fastcgi.sock;
 fastcgi_param LLTYPE reload;
}

Handler

Nginx handler is provided by the
LemonLDAP::NG FastCGI server.

	Handle errors:

error_page 403 http://auth.example.com/lmerror/403;
error_page 404 http://auth.example.com/lmerror/404;
error_page 500 http://auth.example.com/lmerror/500;
error_page 502 http://auth.example.com/lmerror/502;
error_page 503 http://auth.example.com/lmerror/503;

To protect a standard virtual host, you must insert this (or create an
included file):

Insert $_user in logs
include /etc/lemonldap-ng/nginx-lmlog.conf;
access_log /var/log/nginx/access.log lm_combined;

Internal call to FastCGI server
location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 fastcgi_param HOST $http_host;
 fastcgi_param X_ORIGINAL_URI $original_uri;
}

Client requests
location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 # Set REMOTE_USER (for FastCGI apps only)
 #fastcgi_param REMOTE_USER $lmremote_user

 ##################################
 # PASSING HEADERS TO APPLICATION #
 ##################################

 # IF LUA IS SUPPORTED
 #include /path/to/nginx-lua-headers.conf

 # ELSE
 # Set manually your headers
 #auth_request_set $authuser $upstream_http_auth_user;
 #proxy_set_header Auth-User $authuser;
 # OR
 #fastcgi_param HTTP_AUTH_USER $authuser;

 # Then (if LUA not supported), change cookie header to hide LLNG cookie
 #auth_request_set $lmcookie $upstream_http_cookie;
 #proxy_set_header Cookie: $lmcookie;
 # OR
 #fastcgi_param HTTP_COOKIE $lmcookie;

 # Insert then your configuration (fastcgi_* or proxy_*)

Configuration reload

Note

As Handlers keep configuration in cache, when configuration
change, it should be updated in Handlers. An Apache restart will work,
but LemonLDAP::NG offers the mean to reload them through an HTTP
request. Configuration reload will then be effective in less than 10
minutes. If you want to change this timeout, set checkTime = 240 in
your lemonldap-ng.ini file (values in seconds)

After configuration is saved by Manager, LemonLDAP::NG will try to
reload configuration on distant Handlers by sending an HTTP request to
the servers. The servers and URLs can be configured in Manager,
General Parameters > reload configuration URLs: keys are server
names or IP the requests will be sent to, and values are the requested
URLs.

You also have a parameter to adjust the timeout used to request reload
URLs, it is be default set to 5 seconds.

Attention

If “Compact configuration file” option is enabled, all
useless parameters are removed to limit file size. Typically, if SAMLv2
service is disabled, all relative parameters will be erased. To avoid
useless parameters to be purged, you can disable this option.

These parameters can be overwritten in LemonLDAP::NG ini file, in the
section apply.

Tip

You only need a reload URL per physical servers, as Handlers
share the same configuration cache on each physical server.

The reload target is managed in Apache or Nginx configuration,
inside a virtual host protected by LemonLDAP::NG Handler (see below
examples in Apache->handler or Nginx->Handler).

Attention

You must allow access to declared URLs to your Manager
IP.

Attention

If reload URL is served in HTTPS, to avoid “Error 500
(certificate verify failed)”, Go to :

General Parameters > Advanced Parameters > Security > SSL options for server requests

and set :

verify_hostname => 0

SSL_verify_mode => 0

Attention

If you want to use reload mechanism on a portal only
host, you must install a handler in Portal host to be able to refresh
local cache. Include handler-nginx.conf or handler-apache2.conf
for example

Practical use case: configure reload in a LL::NG cluster. In this case
you will have two servers (with IP 1.1.1.1 and 1.1.1.2), but you can
keep only one reload URL (reload.example.com):

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 addKey \
reloadUrls '1.1.1.1' 'http://reload.example.com/reload' \
reloadUrls '1.1.1.2' 'http://reload.example.com/reload'

You also need to adjust the protection of the reload vhost, for example:

<Location /reload>
 Require ip 127 ::1 1.1.1.1 1.1.1.2
 SetHandler perl-script
 PerlResponseHandler Lemonldap::NG::Handler::ApacheMP2->reload
</Location>

Local file

LemonLDAP::NG configuration can be managed in a local file with INI
format [http://en.wikipedia.org/wiki/INI_file]. This file is called
lemonldap-ng.ini and has the following sections:

	configuration: where configuration is stored

	apply: reload URL for distant Hanlders

	all: parameters for all modules

	portal: parameters only for Portal

	manager: parameters only for Manager

	handler: parameters only for Handler

When you set a parameter in lemonldap-ng.ini, it will override the
parameter from the global configuration.

For example, to override configured skin for portal:

[portal]
portalSkin = dark

Tip

You need to know the technical name of configuration parameter
to do this. You can refer to parameter list to
find it.

Single Sign On cookie, domain and portal URL

SSO cookie

The SSO cookie is built by the portal (as described in the
login kinematic), or by the
Handler for cross domain authentication (see
CDA kinematic).

To edit SSO cookie parameters, go in Manager, General Parameters >
Cookies:

	Cookie name: name of the cookie, can be changed to avoid
conflicts with other LemonLDAP::NG installations

	Domain: validity domain for the cookie (the cookie will not be
sent on other domains)

	Multiple domains: enable cross domain mechanism
(without this, you cannot extend SSO to other domains)

	Secured cookie: 4 options:

	Non secured cookie: the cookie can be sent over HTTP and HTTPS
connections

	Secured cookie: the cookie can only be sent over HTTPS

	Double cookie: two cookies are delivered, one for HTTP and
HTTPS connections, the other for HTTPS only

	Double cookie for single session: same as double cookie but
only one session is created in session database

	Javascript protection: set httpOnly flag, to prevent cookie from
being leaked by malicious javascript code

	Cookie expiration time: by default, SSO cookie is a session
cookie, which means it will be destroyed when browser is closed. You
can change this behavior by setting a cookie expiration time. It must
be an integer. Cookie Expiration Time value is a number of
seconds until the cookie expires. Set a zero value to disable
expiration time and use a session cookie.

	Cookie SameSite value: the value of the SameSite cookie attribute. By
default, LemonLDAP::NG will set it to “Lax” in most cases, and “None” if you
use federated authentiication like SAML or OIdC. Using “None” requires Secured Cookies,
and accessing applications over HTTPS on most web browsers.

Danger

When you change cookie expiration time, it is written on
the user hard disk unlike session cookie

Attention

Changing the domain value will not update other
configuration parameters, like virtual host names, portal URL, etc. You
have to update them by yourself.

Portal URL

Portal URL is the address used to redirect users on the authentication
portal by:

	Handler: user is redirected if he has no SSO cookie (or in
CDA mode)

	Portal: the portal redirect on itself in many cases (credentials
POST, SAML, etc.)

Danger

The portal URL must be inside SSO domain. If secured
cookie is enabled, the portal URL must be HTTPS.

Redirections

Handler Redirections

Note

When a user access a Handler without a cookie, he is redirected on
portal, and the target URL is encoded in redirection URL (to redirect
user after authentication process).

Protocol and port

To encode the redirection URL, the handler will use some Apache
environment variables and also configuration settings:

	HTTPS: use https as protocol

	Port: port of the application (by default, 80 for http, 443 for
https)

These parameters can be configured in Manager, in General Parameters
> Advanced parameters > Handler redirections.

Tip

These settings can be overridden per virtual host, see
virtual host management.

Forbidden and Server error

Handler use the default Apache error code for the following cases:

	User has no access authorization: FORBIDDEN (403)

	An error occurs on server side: SERVER_ERROR (500)

	The application is in maintenance: HTTP_SERVICE_UNAVAILABLE (503)

These errors can be catch through Apache ErrorDocument directive or
Nginx error_page directive, to redirect user on a specific page:

Apache: Common error page and security parameters
ErrorDocument 403 http://auth.example.com/?lmError=403
ErrorDocument 500 http://auth.example.com/?lmError=500
ErrorDocument 503 http://auth.example.com/?lmError=503

Nginx: Common error page and security parameters
error_page 403 http://auth.example.com/?lmError=403;
error_page 500 http://auth.example.com/?lmError=500;
error_page 503 http://auth.example.com/?lmError=503;

It is also possible to redirect the user without using
ErrorDocument: the Handler will not return 403, 500, 503 code, but
code 302 (REDIRECT).

The user will be redirected on portal URL with error in the lmError
URL parameter.

These parameters can be configured in Manager, in General Parameters
> Advanced parameters > Handler redirections:

	Redirect on forbidden: use 302 instead 403

	Redirect on error: use 302 instead 500 or 503

Portal Redirections

Note

If a user is redirected from handler to portal for authentication
and once he is authenticated, portal redirects him to the redirection
URL.

	Redirection message: The redirection from portal can be done
either with code 303 (See Other), or with a JavaScript redirection.
Often the redirection takes some time because it is user’s first
access to the protected app, so a new app session has to be created :
JavaScript redirection improves user experience by informing that
authentication is performed, and by preventing from clicking again on
the button because it is too slow.

	Keep redirections for Ajax: By default, when an Ajax request is
done on the portal for an unauthenticated user (after a redirection
done by the handler), a 401 code will be sentwith a
WWW-Authenticate header containing “SSO <portal-URL>”. Set this
option to 1 to keep the old behavior (return of HTML code).

	Skip re-auth confirmation: by default, when re-authentication is
needed, a confirmation screen is displayed to let user accept the
re-authentication. If you enable this option, user will be directly
redirected to login page.

Exported variables

Presentation

Exported variables are the variables available to
write rules and headers. They are
extracted from the users database by the
users module.

To create a variable, you’ve just to map a user attributes in LL::NG
using Variables » Exported variables. For each variable, the
first field is the name which will be used in rules, macros or headers
and the second field is the name of the user database field.

Examples for LDAP:

	Variable name

	LDAP attribute

	uid

	uid

	number

	employeeNumber

	name

	sn

You can define exported variables for each module in the module
configuration itself. Variables defined in the main
Exported variables will be used for each backend. Variables defined
in the exported variables node of the module will be used only for that
module.

[image: Exported variables in the Manager]

Tip

You can define environment variables in
Exported variables, this allows one to populate user session with
some environment values. Environment variables will not be queried in
users database.

Extend variables using macros and groups

Macros and groups are calculated during authentication process by the
portal:

	macros are used to extend (or rewrite)
exported variables. A macro is stored as
attributes: it can contain boolean results or any string

	macros can also be used to import environment variables (these
variables are in CGI format). Example: $ENV{HTTP_COOKIE}

	groups are stored as a string with values separated by ‘’; ‘’
(default values separator) in the special attribute groups: it
contains the names of groups whose rules were returned true for the
current user. For example:

$groups = group3; admin

	You can also get groups in $hGroups which is a Hash Reference of
this form:

$hGroups = {
 'group3' => {
 'description' => [
 'Service 3',
 'Service 3 TEST'
],
 'cn' => [
 'group3'
],
 'name' => 'group3'
 },
 'admin' => {
 'name' => 'admin'
 }
 }

Example for macros:

boolean macro
isAdmin -> $uid eq 'foo' or $uid eq 'bar'
other macro
displayName -> $givenName." ".$surName

Use a boolean macro in a rule
^/admin -> $isAdmin
Use a string macro in a HTTP header
Display-Name -> $displayName

Defining a group for admins

group
admin -> $uid eq 'foo' or $uid eq 'bar'

Using groups in a rule

^/admin -> $groups =~ /\badmin\b/

Or with hGroups
^/admin -> defined $hGroups->{'admin'}

Since 2.0.8
^/admin -> inGroup('admin')

Note

Groups are computed after macros, so a group rule may involve a
macro value.

Warning

Macros and groups are computed in alphanumeric order,
that is, in the order they are displayed in the manager. For example,
macro “macro1” will be computed before macro “macro2”: so, expression of
macro2 may involve value of macro1. As same for groups: a group rule may
involve another, previously computed group.

Manage virtual hosts

LemonLDAP::NG configuration is build around Apache or Nginx virtual
hosts. Each virtual host is a protected resource, with access rules,
headers, POST data and options.

Apache configuration

To protect a virtual host in Apache, the LemonLDAP::NG Handler must be
activated (see
Apache global configuration).

Then you can take any virtual host, and simply add this line to protect
it:

PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

Hosted application

Example of a protected virtual host for a local application:

<VirtualHost *:80>
 ServerName localsite.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

 DocumentRoot /var/www/localsite

 ErrorLog /var/log/apache2/localsite_error.log
 CustomLog /var/log/apache2/localsite_access.log combined

</VirtualHost>

Reverse proxy

Example of a protected virtual host with LemonLDAP::NG as reverse proxy:

<VirtualHost *:80>
 ServerName application.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

 # Reverse-Proxy
 ProxyPass / http://private-name/
 # Change "Location" header in redirections
 ProxyPassReverse / http://private-name/
 # Change domain cookies
 ProxyPassReverseCookieDomain private-name application.example.com

 ErrorLog /var/log/apache2/proxysite_error.log
 CustomLog /var/log/apache2/proxysite_access.log combined
</VirtualHost>

Same with remote server configured with the same host name:

<VirtualHost *:80>
 ServerName application.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

 # Reverse-Proxy
 ProxyPass / http://APPLICATION_IP/

 ProxyPreserveHost on

 ErrorLog /var/log/apache2/proxysite_error.log
 CustomLog /var/log/apache2/proxysite_access.log combined
</VirtualHost>

Note

The ProxyPreserveHost directive will forward the Host header
to the protected application. To learn more about using Apache as
reverse-proxy, see Apache
documentation [http://httpd.apache.org/docs/current/mod/mod_proxy.html].

Tip

Some applications need the REMOTE_USER environment
variable to get the connected user, which is not set in reverse-proxy
mode. In this case, see
how convert header into environment variable.

Add a floating menu

A little floating menu can be added to application with this simple
Apache configuration:

PerlModule Lemonldap::NG::Handler::ApacheMP2::Menu
PerlOutputFilterHandler Lemonldap::NG::Handler::ApacheMP2::Menu->run

Pages where this menu is displayed can be restricted, for example:

<Location /var/www/html/index.php>
PerlOutputFilterHandler Lemonldap::NG::Handler::ApacheMP2::Menu->run
</Location>

Attention

You need to disable mod_deflate to use the floating
menu

Nginx configuration

To protect a virtual host in Nginx, the LemonLDAP::NG FastCGI server
must be launched (see
LemonLDAP::NG FastCGI server).

Then you can take any virtual host and modify it:

	Declare the /lmauth endpoint

location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;

 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";

 # Keep original hostname
 fastcgi_param HOST $http_host;

 # Keep original request (LLNG server will receive /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
}

	Protect the application (/ or /path/to/protect):

location /path/to/protect {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 auth_request_set $cookie_value $upstream_http_set_cookie;
 add_header Set-Cookie $cookie_value;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 # ...
}

	Use LUA or set manually the headers:

location /path/to/protect {

 # ...

 # IF LUA IS SUPPORTED
 #include /etc/lemonldap-ng/nginx-lua-headers.conf;

 # ELSE
 # Set manually your headers
 #auth_request_set $authuser $upstream_http_auth_user;
 #proxy_set_header Auth-User $authuser;
 # OR
 #fastcgi_param HTTP_AUTH_USER $authuser;

 # Then (if LUA not supported), change cookie header to hide LLNG cookie
 #auth_request_set $lmcookie $upstream_http_cookie;
 #proxy_set_header Cookie: $lmcookie;
 # OR in the corresponding block
 #fastcgi_param HTTP_COOKIE $lmcookie;

 # Set REMOTE_USER (for FastCGI apps only)
 #fastcgi_param REMOTE_USER $lmremote_user;
}

Hosted application

Example of a protected virtual host for a local application:

Log format
include /path/to/lemonldap-ng/nginx-lmlog.conf;
server {
 listen 80;
 server_name myserver;
 root /var/www/html;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass /path/to/llng-fastcgi-server.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will receive /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location ~ \.php$ {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;
 include fastcgi_params;
 try_files $fastcgi_script_name =404;
 fastcgi_pass /path/to/php-fpm/socket;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_intercept_errors on;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_hide_header X-Powered-By;

 ##################################
 # PASSING HEADERS TO APPLICATION #
 ##################################
 # IF LUA IS SUPPORTED
 #include /path/to/nginx-lua-headers.conf

 # ELSE
 # Set manually your headers
 #auth_request_set $authuser $upstream_http_auth_user;
 #fastcgi_param HTTP_AUTH_USER $authuser;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Reverse proxy

	Example of a protected reverse-proxy:

Log format
include /path/to/lemonldap-ng/nginx-lmlog.conf;
server {
 listen 80;
 server_name myserver;
 root /var/www/html;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass /path/to/llng-fastcgi-server.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will receive /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;

 proxy_pass http://remote.server/;
 include /etc/nginx/proxy_params;

 ##################################
 # PASSING HEADERS TO APPLICATION #
 ##################################
 # IF LUA IS SUPPORTED
 #include /path/to/nginx-lua-headers.conf;

 # ELSE
 # Set manually your headers
 #auth_request_set $authuser $upstream_http_auth_user;
 #proxy_set_header HTTP_AUTH_USER $authuser;
 }
}

If /etc/nginx/proxy_params file does not exist, you can create it with this content:

proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

	Example of a Nginx Virtual Host using uWSGI with many URIs protected by different types of handler:

Log format
include /path/to/lemonldap-ng/nginx-lmlog.conf;
server {
 listen 80;
 server_name myserver;
 root /var/www/html;

 # Internal MAIN handler authentication request
 location = /lmauth {
 internal;
 # uWSGI Configuration
 include /etc/nginx/uwsgi_params;
 uwsgi_pass 127.0.0.1:5000;
 uwsgi_pass_request_body off;
 uwsgi_param CONTENT_LENGTH "";
 uwsgi_param HOST $http_host;
 uwsgi_param X_ORIGINAL_URI $original_uri;
 # Improve performances
 uwsgi_buffer_size 32k;
 uwsgi_buffers 32 32k;
 }

 # Internal AUTH_BASIC handler authentication request
 location = /lmauth-basic {
 internal;
 # uWSGI Configuration
 include /etc/nginx/uwsgi_params;
 uwsgi_pass 127.0.0.1:5000;
 uwsgi_pass_request_body off;
 uwsgi_param CONTENT_LENGTH "";
 uwsgi_param HOST $http_host;
 uwsgi_param X_ORIGINAL_URI $original_uri;
 uwsgi_param VHOSTTYPE AuthBasic;
 # Improve performances
 uwsgi_buffer_size 32k;
 uwsgi_buffers 32 32k;
 }

 # Internal SERVICE_TOKEN handler authentication request
 location = /lmauth-service {
 internal;
 # uWSGI Configuration
 include /etc/nginx/uwsgi_params;
 uwsgi_pass 127.0.0.1:5000;
 uwsgi_pass_request_body off;
 uwsgi_param CONTENT_LENGTH "";
 uwsgi_param HOST $http_host;
 uwsgi_param X_ORIGINAL_URI $original_uri;
 uwsgi_param VHOSTTYPE ServiceToken;
 # Improve performances
 uwsgi_buffer_size 32k;
 uwsgi_buffers 32 32k;
 }

 # Client requests
 location / {
 ##################################
 # CALLING AUTHENTICATION #
 ##################################
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmremote_custom $upstream_http_lm_remote_custom;
 auth_request_set $lmlocation $upstream_http_location;
 # Remove this for AuthBasic handler
 error_page 401 $lmlocation;

 ##################################
 # PASSING HEADERS TO APPLICATION #
 ##################################
 # IF LUA IS SUPPORTED
 include /etc/nginx/nginx-lua-headers.conf;
 }

 location /AuthBasic/ {
 ##################################
 # CALLING AUTHENTICATION #
 ##################################
 auth_request /lmauth-basic;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmremote_custom $upstream_http_lm_remote_custom;
 auth_request_set $lmlocation $upstream_http_location;
 # Remove this for AuthBasic handler
 #error_page 401 $lmlocation;

 ##################################
 # PASSING HEADERS TO APPLICATION #
 ##################################
 # IF LUA IS SUPPORTED
 include /etc/nginx/nginx-lua-headers.conf;
 }

 location /web-service/ {
 ##################################
 # CALLING AUTHENTICATION #
 ##################################
 auth_request /lmauth-service;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 # Remove this for AuthBasic handler
 error_page 401 $lmlocation;

 ##################################
 # PASSING HEADERS TO APPLICATION #
 ##################################
 # IF LUA IS SUPPORTED
 include /etc/nginx/nginx-lua-headers.conf;
 }
}

LemonLDAP::NG configuration

A virtual host protected by LemonLDAP::NG Handler must be registered in
LemonLDAP::NG configuration.

To do this, use the Manager, and go in Virtual Hosts branch. You can
add, delete or modify a virtual host here. Enter the exact virtual host
name (for example test.example.com) or use a wildcard (for example
*.example.com).

A virtual host contains:

	Access rules: check user’s right on URL patterns

	HTTP headers: forge information sent to protected applications

	POST data: use form replay

	Options: redirection port and protocol

Access rules and HTTP headers

See Writing rules and headers to
learn how to configure access control and HTTP headers sent to
application by LL::NG.

Attention

With Nginx-based ReverseProxy, header directives can
be appended by a LUA script.

To send more than 15 headers to protected applications,
you have to edit and modify :

/etc/nginx/nginx-lua-headers.conf

Danger

* Nginx gets rid of any empty headers. There is no
point of passing along empty values to another server; it would only
serve to bloat the request. In other words, headers with empty values
are completely removed from the passed request.

* Nginx, by default, will consider any header that contains
underscores as invalid. It will remove these from the proxied request.
If you wish to have Nginx interpret these as valid, you can set the
underscores_in_headers directive to “on”, otherwise your headers
will never make it to the backend server.

POST data

See Form replay to learn how to configure form
replay to POST data on protected applications.

Options

Some options are available:

	Port: used to build redirection URL (when user is not logged, or for
CDA requests)

	HTTPS: used to build redirection URL

	Maintenance mode: reject all requests with a maintenance message

	Aliases: list of aliases for this virtual host (avoid to rewrite
rules,…)

	Access to trace: can be used for overwriting REMOTE_CUSTOM with a custom function.
Provide a comma separated parameters list with custom function path and args.
Args can be vars or session attributes, macros, …
By example: My::accessToTrace, Doctor, Who, _whatToTrace

	Type: handler type (normal,
ServiceToken Handler,
DevOps Handler,…)

	Required authentication level: this option avoids to reject user with
a rule based on $_authenticationLevel. When user has not got the
required level, he is redirected to an upgrade page in the portal.
This default level is required for ALL locations relative to this virtual host.
It can be overrided for each locations.

	ServiceToken timeout: by default, ServiceToken is just valid during 30
seconds. This TTL can be customized for each virtual host.

Attention

A hash reference containing $req, $session, $vhost, $custom and an array reference
with provided parameters is passed to the custom function.

package My;

sub accessToTrace {
 my $hash = shift;
 my $custom = $hash->{custom};
 my $req = $hash->{req};
 my $vhost = $hash->{vhost};
 my $custom = $hash->{custom};
 my $params = $hash->{params};
 my $session = $hash->{session};

 return "$custom alias $params->[0]_$params->[1]:$session->{groups}:$session->{$params->[2]}";
}

1;

Danger

A same virtual host can serve many locations. Each
location can be protected by a different type of handler :

server test1.example.com 80
 location ^/AuthBasic => AuthBasic handler
 location ^/AuthCookie => Main handler

Keep in mind that AuthBasic handler use “Login/Password” to authenticate
users. If you set “Authentication level required” option to “5” by
example, AuthBasic requests will be ALWAYS rejected because AuthBasic
authentication level is lower than required level.

Attention

A negative or null ServiceToken timeout value will be
overloaded by handlerServiceTokenTTL (30 seconds by default).

“Port” and “HTTPS” options are used to build redirection URL (when user
is not logged, or for CDA requests). By default, default values are
used. These options are only here to override default values.

Sessions

LL::NG rely on a session mechanism with the session ID as a shared
secret between the user (in SSO cookie) and the
session database.

To configure sessions, go in Manager, General Parameters »
Sessions:

	Store user password in session data: see
password store documentation.

	Display session identifier: Should the session ID be displayed in the manager’s session explorer. The session ID is a sensitive information that should only be shown to highly trusted administrators.

	Sessions timeout: Maximum lifetime of a session. Old sessions are
deleted by a cron script.

	Sessions activity timeout: Maximum inactivity duration.

	Sessions update interval: Minimum interval used to update session
when activity timeout is set.

Danger

Session activity timeout requires Handlers to have a write
access to sessions database.

	Opening conditions: rules which are evaluated before granting
session, see Grant Session plugin documentation

	Sessions Storage: you can define here which session backend to
use, with the backend options. See
sessions database configuration to
know which modules you can use. Here are some global options that you
can use with all sessions backends:

	generateModule: allows one to override the default module that
generates sessions identifiers. For security reasons, we recommend
to use
Lemonldap::NG::Common::Apache::Session::Generate::SHA256

	IDLength: length of sessions identifiers. Max is 32 for MD5
and 64 for SHA256

	Multiple sessions, you can restrict the number of open sessions:

	One session per user: when a user logs in, all their previous
sessions are removed

	One IP address per user: when a user logs in, all their
previous sessions on a different IP address are removed

	One user per IP address: when a user logs in, all sessions
that belong to a different user on that IP address are removed

	Display deleted sessions: display deleted sessions on
authentication phase.

	Display other sessions: display other sessions on
authentication phase, with a link to delete them.

	Persistent sessions: are used for storing users log in history,
2F devices, OIDCConsents and so on. Heavy organizations may have to
disable persistent sessions storage to avoid too many database
tuples.

	Disable storage: Do not store user persitent sessions.

Attention

Note that since HTTP protocol is not connected,
restrictions are not applied to the new session: the oldest are
destroyed.

Command-line tools

New in version 2.0.9.

You can use the lemonldap-ng-sessions tool to search, update or delete sessions. See a few examples in the examples page

Deprecated since version 2.0.10.

	LLNG Portal provides a simple tool to delete a session:
llngDeleteSession. To use it, simply give it the user identifier
(wildcard are authorizated):

Delete all sessions opened by user "dwho"
$ llngDeleteSession dwho
Delete all sessions opened by user starting with "dh"
$ llngDeleteSession dh*
Delete all sessions:
$ llngDeleteSession *

Portal configuration

	The portal

	Portal customization

	Portal menu

	REST/SOAP servers

	Captcha

	Public pages

	Second Factors

	Standard SSO protocols

	Authentication, users and password databases

	Identity provider

	Attacks and Protection

	Plugins

The portal

The portal is the main component of LL::NG. It provides many features:

	Authentication service of course

	Web based for normal users:

	using own database (LDAP, SQL,
…)

	using web server authentication system (used for
SSL, Kerberos,
HTTP basic authentication, …)

	using external identity provider (SAML,
OpenID, CAS,
Twitter, other LL::NG system, …)

	all together (based on user choice,
rules, …)

	SOAP based and
REST based for client-server software,
specific development, …

	Identity provider: LL::NG is able to provide identity service
using:

	SAML

	OpenID Connect

	CAS

	Identity provider proxy: LL::NG can be
used as proxy translator between systems talking SAML, OpenID, CAS,
…

	Internal SOAP server used by
SOAP configuration backend and usable for
specific development (see SOAP services for
more)

	Internal REST server used by
REST configuration backend and usable for
specific development (see REST services for
more)

	Interactive management of user passwords:

	Password change form (in menu)

	Self service reset (send a mail to the user with a to change the
password)

	Force password change with LDAP password policy password reset
flag

	Application menu: display authorized
applications in categories

	Notifications: prompt users with a message
if found in the notification database

	Second factors management

Functioning

LL::NG portal is a modular component. It needs 4 modules to work:

	Authentication:
how check user credentials

	User database:
where collect user information

	Password database:
where change password

	Identity provider: how forward user
identity

Tip

Each module can be disabled using the Null backend.

Kinematics

	Check if URL asked is valid

	Check if user is already authenticated

	If not authenticated (or authentication is forced) try to find it
(userDB module) and to authenticate it (auth module), create
session, ask for second factor if required, calculate groups and
macros and store them. In 1.3, LL::NG has got a captcha feature
which is used in this case.

	Modify password if asked (password module)

	Provides identity if asked (IdP module)

	Build cookie(s)

	Redirect user to the asked URL or display menu

Note

See also
general kinematics presentation.

URL parameters

Some parameters in URL can change the behavior of the portal:

	logout: Launch the logout process (for example: logout=1)

	tab: Preselect a tab (Choice or Menu) (for example:
tab=password)

	llnglanguage: Force lang used to display the page (for example:
llnglanguage=fr)

	setCookieLang: Update lang cookie to persist the language set
with llnglanguage parameter (for example: setCookieLang=1)

Portal customization

Note

The portal is the visible part of LemonLDAP::NG, all user
interactions are displayed on it.

Main Logo

You can change the default Main Logo in Manager: General Parameters >
Portal > Customization > Main Logo.

A blank value disables Main Logo display.

Tip

	Logo files must be stored in lemonldap-ng-portal/site/htdocs/static/my/path directory

	Logo file path must be like my/path/logo.png

	Main logo is included in Portal templates AND mail body

Show languages choice

You can disabled languages choice in Manager: General Parameters >
Portal > Customization > Show languages choice.

Option enabled by default.

Tip

If languages choice is disabled, Portal displays accepted languages by
your browser (EN by default).

Custom CSS file

You can define a custom CSS file, for example custom.css, which will
be loaded after default CSS files. This file needs to be created in the
static repository
(/usr/share/lemonldap-ng/portal/htdocs/static/boostrap/css).

Then set this value in Custom CSS parameter :
bootstrap/css/custom.css.

Sample CSS file, to remove white background of main logo:

#header img {
 background-color: transparent;
}

Skin

LemonLDAP::NG is shipped with bootstrap skin.

But you can make your own. See Skin customization below.

Default skin

You can change the default skin in Manager: General Parameters >
Portal > Customization > Default skin.

Select the Custom skin, then set the name of the skin you want to
use in the input below.

Skin background

Go in General Parameters > Portal > Customization >
Skin background. You can define a background by selecting one of the
available image. Use None to use the default skin background
configuration.

[image: image0]

To set your own background, copy your file in
/usr/share/lemonldap-ng/portal/htdocs/static/common/backgrounds/ and
register it in /etc/lemonldap-ng/lemonldap-ng.ini:

[portal]
portalSkinBackground = file.png

You can also use lemonldap-ng-cli:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli set portalSkinBackground file.png

Skin rules

You might want to display different skin depending on the URL that was
called before being redirected to the portal, or the IP address of the
user.

To achieve this, you can create a rule in the Manager: select
General Parameters > Portal > Customization >
Skin display rules on click on “New key”. Then fill the two fields;

	Rule: a Perl expression (you can use %ENV hash to get environment
variables, or $_url to get URL called before redirection, or $ipAddr
to use user IP address). If the rule evaluation is true, the
corresponding skin is applied.

	Skin: the name of the skin to use.

Skin files

A skin is composed of different files:

	.tpl: Perl HTML::Template files, for HTML content

	.css: CSS (styles)

	.js: Javascript

	images and other media files

A skin will often refer to the common skin, which is not a real
skin, but shared skin objects (like scripts, images and CSS).

Skin customization

Attention

If you modify directly the skin files, your
modifications will certainly be erased on the next upgrade. The best is
to create your own skin, based on an existing skin.

Here we explain how to create a new skin, named myskin, from the
bootstrap skin.

First copy static content:

cd /usr/share/lemonldap-ng/portal/htdocs/static
mkdir myskin
cd myskin/
cp -a ../bootstrap/js/ .
cp -a ../bootstrap/css/ .
mkdir images

Then create symbolic links on template files, as you might not want to
rewrite all HTML code (else, do as you want).

cd /usr/share/lemonldap-ng/portal/templates/
mkdir myskin
cd myskin/

We include some template files that can be customized:

	customhead.tpl : HTML header markups (like CSS, js inclusion)

	customheader.tpl : HTML code in the header

	customfooter.tpl : HTML code in the footer

	customLoginHeader.tpl : HTML code in the login header

	customLoginFooter.tpl : HTML code in the login footer

To use custom files, copy them into your skin folder:

cp ../bootstrap/custom* .

Then you can add your media to myskin/images, you will be able to
use them in HTML template with this code:

<img src="<TMPL_VAR NAME="STATIC_PREFIX">myskin/images/logo.png" class="mx-auto d-block" />

To change CSS, two options:

	Edit myksin/css/styles.css and myskin/css/styles.min.css

	Create a new CSS file, for example myskin/css/myskin.css and load it
in customhead.tpl:

<link href="<TMPL_VAR NAME="STATIC_PREFIX">myskin/css/myskin.css" rel="stylesheet" type="text/css" />

Put then all custom HTML code in the custom template files.

To configure your new skin in Manager, select the custom skin, and enter
your skin name in the configuration field. For example with
lemonldap-ng-cli:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 set portalSkin 'myskin' portalSkinBackground ''

Messages

Messages are defined in source code. If they really do not please you,
override them! You just need to know the ID of the message (look at
Portal/Simple.pm).

There are two methods to do this:

	Use lemonldap-ng.ini:

[portal]

Custom error messages
error_0 = Big brother is watching you, authenticated user

Custom standard messages
msg_lastLogins = Your last connections

You can also define messages in several languages or disable message
boxes by using the bareword _hide_ :

error_en_0 = Big brother is watching you, authenticated user
error_fr_0 = Souriez vous êtes surveillés !
msg_fr_lastLogins = Dernières connexions
error_9 = _hide_

	Create a lang file in custom skin:

If you have a custom skin, then you can create a lang file in
templates/<your skin> similar to the default lang files provided in
htdocs/static/languages/.

For example templates/myskin/en.json:

{
"PE9":"Please authenticate!"
}

You can also create a file called all.json to override messages in
all languages.

Menu tabs

If you modify the menu template to add some tabs, you should add the new
tabs in `customMenuTabs` parameter in lemonldap-ng.ini:

[portal]

customMenuTabs = test, test2

This will allow one to display the tab directly with this URL:
http://auth.example.com/?tab=test

Template parameters

Template parameters are defined in source code. If you need to add a
template parameter for your customization, then add to
lemonldap-ng.ini:

[portal]

Custom template parameters
tpl_myparam = world

Then you will be able to use it in your template like this:

Hello <TMPL_VAR NAME="myparam">!

All session variables are also available in templates, with the prefix
session_:

Hello <TMPL_VAR NAME="session_cn">!

You can also display environment variables, with the prefix env_:

Your IP is <TMPL_VAR NAME="env_REMOTE_ADDR">

Buttons

This node allows one to enable/disable buttons on the login page:

	Check last logins: display a checkbox on login form, allowing
user to check his login history right after opening session

	Reset password: display a link to
reset your password page (for password based
authentication backends). Number of allowed retries can be set (3
times by default)

	Register: display a link to register page (for
password based authentication backends)

	Reset certificate: display a link to reset certificate page (for
password based authentication backends)

Password management

General

	Require old password: used only in the password changing module
of the menu, will check the old password before updating it

	Hide old password: used only if the password need to be reset by
the user (LDAP password policy), will hide the old password input

	Send mail on password change: send a mail if the password is
changed from the Menu, or from forced password reset (LDAP password
policy)

Password Policy

Tip

Available since version 2.0.6

	Minimal size: leave 0 to bypass the check

	Minimal lower characters: leave 0 to bypass the check

	Minimal upper characters: leave 0 to bypass the check

	Minimal digit characters: leave 0 to bypass the check

	Minimal special characters: leave 0 to bypass the check

	Allowed special characters: set ‘__ALL__’ value to allow ALL special characters. A blanck value forbids ALL special characters (Note that _ is not a special character)

	Display policy in password form: enable this to display an
information message about password policy constraints

Other parameters

	User attribute: which session attribute will be used to display
Connected as in the menu

	New window: open menu links in new window

	Anti iframe protection: Set X-Frame-Options and CSP
frame-ancestors headers (see Browser
compatibility [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility])

	Ping interval: Number of milliseconds between each ping (Ajax
request) on the portal menu. Set to 0 to dismiss checks.

	Show error on expired session: Display the error “Session
expired”, which stops the authentication process. This is enabled by
default but can be disabled to prevent transparent authentication
(like SSL or Kerberos) to be stopped.

	Show error on mail not found: Display error if provided mail is
not found in password reset by mail process. Disabled by default to
prevent mail enumeration from this page.

Portal menu

Note

The menu is displayed if authentication is successful.

Menu modules

LemonLDAP::NG portal menu has 4 modules:

	Application list: display categories and applications allowed for
the user

	Password change: form to change the password

	Login history: display user’s last logins and last failed logins

	OIDC Consents: display user’s OpenId Connect consents

	Logout: logout button

Each module can be activated through a rule, using user session
information. These rules can be set through Manager:
General Parameters > Portal > Menu > Modules activation.

You can use 0 or 1 to disable/enable the module, or use a more
complex rule. For example, to display the password change form only for
user authenticated through LDAP or DBI:

$_auth eq LDAP or $_auth eq DBI

Categories and applications

Configuring the virtual hosts is not sufficient to
display an application in the menu. Indeed, a virtual host can serve
several applications (http://vhost.example.com/appli1,
http://vhost.example.com/appli2).

In Manager, you can configure categories and applications in
General Parameters > Portal > Menu >
Categories and applications.

Application parameters:

[image: image0]

	Name: display text

	Description

	URI: URL of the application

	Tooltip: information display on mouse over the button

	Logo: file name to use as logo

	Display application:

	Enabled: always display

	Disabled: never display

	Automatic: display only if the user can access it

	Special rule: specify a rule
or “sp: <name>” where “name” is the key name of the service
provider, the corresponding rule will be applied (available for
CAS, SAML or OpenID-Connect)

Tip

Categories and applications are displayed in alphabetical
order.

[image: image1]

Tip

The chosen logo file must be in portal applications logos
directory (portal/htdocs/static/common/apps/). You can set a custom
logo by setting the logo file name directly in the field, and copy the
logo file in portal applications logos directory

REST/SOAP servers

Presentation

LL::NG portal can be configured as REST or (deprecated) SOAP server,
for several usage:

	Configuration access

	Sessions access

	Authentication

	Specific application needs

Configuration

	SOAP/REST exported attributes: list session attributes shared
through SOAP/REST

	Use + to append the default list of technical attributes,
example: + uid mail

REST

Go in General Parameters > Plugins > Portal servers > REST services:

	Session server: Enable REST for sessions

	Configuration server: Enable REST for configuration

	Authentication server: Enable REST for authentication

	Password reset server: Enable REST for password reset

	Server clock tolerance: Allow a clock drift

	Export secret attributes: Secret attributes can be exported

See also REST Services.

SOAP (deprecated)

Go in General Parameters > Plugins > Portal servers > SOAP services:

	Session server: Enable SOAP for sessions

	Configuration server: Enable SOAP for configuration

	WSDL server: Enable WSDL server

See also SOAP Services.

Captcha

Presentation

Captcha is a security mechanism aimed to prevent robots to submit forms.

Captchas are available on the following forms:

	Login form: where user enters login and password to authenticate

	Password reset by mail form: where user enters mail to recover a lost
password

	Register form: where user enters information to create a new account

Attention

We use the Perl module GD::SecurityImage to generate
images, you need to install it if you enable Captcha feature.

Configuration

Go in General parameters > Portal > Captcha:

	Activation in login form: set to 1 to display captcha in login
form

	Activation in password reset by mail form: set to 1 to display
captcha in password reset by mail form

	Activation in register form: set to 1 to display captcha in
register form

	Size: length of captcha

Public pages

Note

Public pages are available since version 1.9.8.

Presentation

Public pages are an easy way to build pages based on LL::NG portal skin.
You can for example create a landing page or customize error pages with
it.

A public page is just a template created in
portal/skins/yourskin/public/ directory, for example test.tpl. This
page can then be displayed with this URL:
http://auth.example.com/public?page=test

Page creation

Create the public/ directory :

mkdir /var/lib/lemonldap-ng/portal/skins/bootstrap/public

Create the new page:

vi /var/lib/lemonldap-ng/portal/skins/bootstrap/public/test.tpl

<TMPL_INCLUDE NAME="../header.tpl">

<div class="container">
 <div class="alert alert-success">
 TEST
 </div>
</div>

<TMPL_INCLUDE NAME="../footer.tpl">

Display the page: http://auth.example.com/public?page=test

Second Factors

Two-Factor Authentication (as known as 2FA) is a kind (subset) of
multi-factor
authentication [https://en.wikipedia.org/wiki/Multi-factor_authentication].
It is a method to confirm a user’s claimed identity by using a
combination of two different factors between:

	something they know (login / password, …)

	something they have (U2F Key, smartphone, …)

	something they are (biometrics like fingerprints, …)

Since 2.0, LLNG provides some second factor plugins that can be used to
complete authentication module with 2FA :

	U2F-or-TOTP (enable both U2F and TOTP)

	TOTP (to use
with FreeOTP [https://freeotp.github.io/],Google-Authenticator [https://en.wikipedia.org/wiki/Google_Authenticator],…)

	U2F tokens

	Yubikey tokens (provided by Yubico)

	E-Mail 2F (Send a code to an email address)

	External 2F (to call an external command)

	REST (Remote REST app)

	RADIUS (Remote RADIUS server)

The E-Mail, External and REST 2F modules
may be declared multiple times with different sets of
parameters.

Registration on first use

If you want to force a 2F registration on first login, you can use the Force
2FA registration at login option.

You can use a rule<writingrulesand_headers> to enable this behavior only for
some users.

Second factor expiration

You can display a message if an expired second factor has been removed by
enabling Display a message if an expired SF is removed option or setting a
rule.

Self-care on Portal

User may register second factors themselves on the Portal by using the 2FA Manager.

The link will be displayed if at least one SFA module is enabled. You can set a
rule to display or not the link.

Session upgrade through 2FA

[image: beta]

If you enable the Use 2FA for session upgrade option, second factor will only
be asked on login if the target application requires an authentication level
that is strictly higher than the one obtained by the Authentication backend
(first factor).

The session upgrade mechanism will only require the second factor step, instead
of doing a complete reauthentication.

Providing tokens from an external source

If you don’t want to use self-registration features for U2F, TOTP and so
on, you can set tokens by yourself (in your LDAP server for example)
and map it to _2fDevices attribute. _2fDevices is a JSON array
that contains token descriptions :

[{"type" : "TOTP", "name" : "MyTOTP", …}, {<other_token>}, …]

U2F Tokens

{"name" : "MyU2FKey" , "type" : "U2F" , "_userKey" : "########" , "_keyHandle":"########" , "epoch":"1524078936"}

TOTP Tokens

{"name" : "MyTOTP" , "type" : "TOTP" , "_secret" : "########" , "epoch" : "1523817955"}

Yubikey Tokens

{"name" : "MyYubikey" , "type" : "UBK" , "_yubikey" : "########" , "epoch" : "1523817715"}

Developer corner

To develop a new 2FA plugin, read
Lemonldap::NG::Portal::Main::SecondFactor (3pm) manpage. Your 2F
module must be a Perl class named
Lemonldap::NG::Portal::2F:://<custom_name>//. To enable it, set
available2F key in your lemonldap-ng.ini file :

[portal]
available2F = U2F,TOTP,<custom_name>

To enable manager Second Factor Administration Module, set
enabledModules key in your lemonldap-ng.ini file :

[portal]
enabledModules = conf, sessions, notifications, 2ndFA

Standard SSO protocols

	SAML service configuration

	OpenID Connect service configuration

SAML service configuration

Note

SAML service configuration is a common step to configure LL::NG as
SAML SP or SAML IDP.

Presentation

This documentation explains how configure SAML service in LL::NG, in
particular:

	Install prerequisites

	Import or generate security keys

	Set SAML end points

Attention

Service configuration will be used to generate LL::NG
SAML metadata, that will be shared with other providers. It means that
if you modify some settings here, you will have to share again the
metadata with other providers. In other words, take the time to
configure this part before sharing metadata.

Prerequisites

Lasso

[image: image0]

SAML2 implementation is based on
Lasso [http://lasso.entrouvert.org]. You will need a very recent
version of Lasso (>= 2.6.0).

Debian/Ubuntu

You can use official Debian packages or those available here:
http://deb.entrouvert.org/.

Tip

We recommend Lasso 2.6 for the SHA256 support, so use the
stretch-testing repository of deb.entrouvert.org.

You will only need to install liblasso-perl package:

sudo apt-get install liblasso-perl

RHEL/CentOS/Fedora

RPMs are available in LL::NG RPM “extras” repository (see
YUM repository)

Then install lasso and lasso-perl packages:

yum install lasso lasso-perl

Attention

Only 64bits package are available.

Other

Download the Lasso tarball [http://lasso.entrouvert.org/download/]
and compile it on your system.

Service configuration

Go in Manager and click on SAML 2 Service node.

Tip

You can use #PORTAL# in values to replace the portal
URL.

Entry Identifier

Your EntityID, often use as metadata URL, by default
#PORTAL#/saml/metadata.

Note

The value will be use in metadata main markup:

<EntityDescriptor entityID="http://auth.example.com/saml/metadata">
 ...
</EntityDescriptor>

Security parameters

You can define keys for SAML message signature and encryption. If no
encryption keys are defined, signature keys are used for signature and
encryption.

To define keys, you can:

	import your own private and public keys (Replace by file input)

	generate new public and private keys (New certificate button)

Changed in version 2.0.10: A X.509 certificate is now generated instead of a plain public key. It has
20 years of validity, and is self signed with the 2048bit RSA key.

Tip

You can enter a password to protect private key with a
password. It will be prompted if you generate keys, else you can set it
in the Private key password.

[image: image1]

	Use certificate in response: Certificate will be sent inside SAML
responses.

	Signature method: set the signature algorithm

Changed in version 2.0.10: The signature method can now be overriden for a SP or IDP. This will only work
if you are using a certificate for signature instead of a public key.

Attention

If you are running a version under 2.0.10, the choice of a signature
algorithm will affect all SP and IDP.

Converting a RSA public key to a certificate

If your application complains about the lack of certificate in SAML Metadatas, and you generated a public RSA key instead of a certificate in a previous version of LemonLDAP::NG, you can convert the public key into a certificate without changing the private key.

Save the private key in a file, and use the openssl commands to
issue a self-signed certificate:

$ openssl req -new -key private.key -out cert.pem -x509 -days 3650

NameID formats

SAML can use different NameID formats. The NameID is the main user
identifier, carried in SAML messages. You can configure here which field
of LL::NG session will be associated to a NameID format.

Note

This parameter is used by SAML IDP to fill the
NameID in authentication responses.

Customizable NameID formats are:

	Email

	X509

	Windows

	Kerberos

Tip

For example, if you are using
AD as authentication backend, you can use
sAMAccountName for the Windows NameID format.

Other NameID formats are automatically managed:

	Transient: NameID is generated

	Persistent: NameID is restored from previous sessions

	Undefined: Default NameID format is used

Authentication contexts

Each LL::NG authentication module has an authentication level, which can
be associated to an SAML authentication
context [http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf].

Note

This parameter is used by SAML IDP to fill the
authentication context in authentication responses. It will use the
authentication level registered in user session to match the SAML
authentication context. It is also used by SAML SP to
fill the authentication level in user session, based on authentication
response authentication context.

Customizable NameID formats are:

	Password

	Password protected transport

	TLS client

	Kerberos

Organization

Note

This concerns all parameters for the Organization metadata
section:

<Organization>
 <OrganizationName xml:lang="en">Example</OrganizationName>
 <OrganizationDisplayName xml:lang="en">Example</OrganizationDisplayName>
 <OrganizationURL xml:lang="en">http://www.example.com</OrganizationURL>
</Organization>

	Display Name: should be displayed on IDP, this is often your
society name

	Name: internal name

	URL: URL of your society

Service Provider

Note

This concerns all parameters for the Service Provider metadata
section:

<SPSSODescriptor>
 ...
</SPSSODescriptor>

General options

	Signed Authentication Request: set to On to always sign
authentication request.

	Want Assertions Signed: set to On to require that received
assertions are signed.

Tip

These options can then be overridden for each Identity
Provider.

Single Logout

For each binding you can set:

	Location: Access Point for SLO request.

	Response Location: Access Point for SLO response.

Available bindings are:

	HTTP Redirect

	HTTP POST

	HTTP SOAP

Assertion Consumer

For each binding you can set:

	Default: will this binding be used by default for authentication
response.

	Location: Access Point for SSO request and response.

Available bindings are:

	HTTP Artifact

	HTTP POST

Artifact Resolution

The only authorized binding is SOAP. This should be set as Default.

Identity Provider

Note

This concerns all parameters for the Service Provider metadata
section:

<IDPSSODescriptor>
 ...
</IDPSSODescriptor>

General parameters

	Want Authentication Request Signed: By default, LemonLDAP::NG requires all SAML Requests to be signed. Set it to “Off” to let each Service Provider metadata decide if their requests should be verified by LemonLDAP::NG or not.

Tip

The per-SP “Check SSO message signature” setting allows you to disable
signature verification even if this option is set to “On” globally

This option will set the WantAuthnRequestsSigned attribute to true in LemonLDAP::NG’s IDP Metadata.

Warning

This setting requires Lasso 2.6.1 to be effective. Older versions behave as if this setting was set to “Off”

Single Sign On

For each binding you can set:

	Location: Access Point for SSO request.

	Response Location: Access Point for SSO response.

Available bindings are:

	HTTP Redirect

	HTTP POST

	HTTP Artifact

Single Logout

For each binding you can set:

	Location: Access Point for SLO request.

	Response Location: Access Point for SLO response.

Available bindings are:

	HTTP Redirect

	HTTP POST

	HTTP SOAP

Artifact Resolution

The only authorized binding is SOAP. This should be set as Default.

Attribute Authority

Note

This concerns all parameters for the Attribute Authority metadata
section

<AttributeAuthorityDescriptor>
 ...
</AttributeAuthorityDescriptor>

Attribute Service

This is the only service to configure, and it accept only the SOAP
binding.

Response Location should be empty, as SOAP responses are directly
returned (synchronous binding).

Advanced

These parameters are not mandatory to run SAML service, but can help to
customize it:

	IDP resolution cookie name: by default, it’s the LL::NG cookie
name suffixed by idp, for example: lemonldapidp.

	UTF8 metadata conversion: set to On to force partner’s metadata
conversion.

	RelayState session timeout: timeout for RelayState sessions. By
default, the RelayState session is deleted when it is read. This
timeout allows one to purge sessions of lost RelayState.

	Use specific query_string method: the CGI query_string method may
break invalid URL encoded signatures (issued for example by ADFS).
This option allows one to use a specific method to extract query
string, that should be compliant with non standard URL encoded
parameters.

	Override Entity ID when acting as IDP: By default, SAML entityID
is the same for SP and IDP roles. Some federations (like
Renater) can require a different entityID for IDP. In
this case, you can fill here the IDP entityID, for example:
https://auth.example.com/saml/metadata/idp.

SAML sessions module name and options

By default, the main session module is used to store SAML temporary data
(like relay-states), but SAML sessions need to use a session module
compatible with the
sessions restrictions feature.

Tip

You can also choose a different session module to split SSO
sessions and SAML sessions.

Common Domain Cookie

The common domain is used by SAML SP to find an
Identity Provider for the user, and by SAML IDP to
register itself in user’s IDP list.

Configuration parameters are:

	Activation: Set to On to enable Common Domain Cookie support.

	Common domain: Name of the common domain (where common cookie is
available).

	Reader URL: URL used by SAML SP to read the cookie. Leave blank
to deactivate the feature.

	Writer URL: URL used by SAML IDP to write the cookie. Leave blank
to deactivate the feature.

Discovery Protocol

Note

Discovery Protocol is also know as WAYF
Service [http://www.switch.ch/aai/support/tools/wayf.html]. More
information can be found in the specification:
sstc-saml-idp-discovery-cs-01.pdf [https://www.oasis-open.org/committees/download.php/28049/sstc-saml-idp-discovery-cs-01.pdf].

When Discovery Protocol is enabled, the LL::NG IDP list is no more used.
Instead user is redirected on the discovery service and is redirected
back to LL::NG with the chosen IDP.

Attention

If the chosen IDP is not registered in LL::NG, user will
be redirected to discovery service again.

Configuration parameters are:

	Activation: Set to On to enable Discovery Protocol support.

	EndPoint URL: Discovery service page

	Policy: Set a value here if you don’t want to use the default
policy
(urn:oasis:names:tc:SAML:profiles:SSO:idp-discovery-protocol:single)

	Is passive: Enable this option to avoid user interaction on
discovery service page

OpenID Connect service configuration

Service configuration

Go in Manager and click on OpenID Connect Service node.

Issuer identifier

Set the issuer identifier, which should be the portal URL.

For example: http://auth.example.com

End points

Name of different OpenID Connect endpoints. You can keep the default
values unless you have a specific need to change them.

	Authorization

	Token

	User Info

	JWKS

	Registration

	End of session

	Check Session

Tip

The end points are published inside JSON metadata.

Authentication context

You can associate here an authentication context to an authentication
level.

Security

	Keys : define public/private key pair to do asymmetric signature. A JWKS
kid (Key ID) is automatically derived when generating new keys.

	Dynamic Registration: Set to 1 to allow clients to register
themselves. This may be a security risk as this will create a new
configuration in the backend per registration request. You can limit
this by protecting in the WebServer the registration end point with
an authentication module, and give the credentials to clients.

	Only allow declared scopes: By default, LemonLDAP::NG will grant all requested scopes. When this option is in use, LemonLDAP will only grant:

	Standard OIDC scopes (openid profile email address phone)

	Scopes declared in Extra Claims

	Scopes declared in Scope Rules (if they match the rule)

	Authorization Code flow: Set to 1 to allow Authorization Code
flow

	Implicit flow: Set to 1 to allow Implicit flow

	Hybrid flow: Set to 1 to allow Hybrid flow

Sessions

It is recommended to use a separate sessions storage for OpenID Connect
sessions, else they will stored in the main sessions storage.

Dynamic Registration

If dynamic registration is enabled, you can configure the following
options to define attributes and extra claims when a new relying party
is registered through the /oauth2/register endpoint:

	Exported vars for dynamic registration

	Extra claims for dynamic registration

Key rotation script

OpenID Connect specification let the possibility to rotate keys to
improve security. LL::NG provide a script to do this, that should be put
in a cronjob.

The script is /usr/share/lemonldap-ng/bin/rotateOidcKeys. It can be
run for example each week:

5 5 * * 6 www-data /usr/share/lemonldap-ng/bin/rotateOidcKeys

Tip

Set the correct Apache user, else generated configuration will
not be readable by LL::NG.

Session management

LL::NG implements the OpenID Connect Change Notification specification [http://openid.net/specs/openid-connect-session-1_0.html#ChangeNotification]

A changed state will be sent if the user is disconnected from LL::NG
portal (or has destroyed its SSO cookie). Else the unchanged state
will be returned.

Tip

To work, the LL::NG cookie must not be protected against
javascript (httpOnly option should be set to 0).

Authentication, users and password databases

	Active Directory

	Apache

	CAS

	Databases

	Demonstration

	Facebook

	GitHub

	Databases

	Kerberos

	LDAP

	LinkedIn

	Null

	OpenID Connect

	PAM

	Proxy

	Radius

	REST

	SAML

	Slave

	SSL

	Twitter

	WebID

	Yubikey

	Custom authentication modules

	Backend choice by users

	Combination of authentication schemes

	Multiple backends stack

	OpenID

	Remote

	U2F-or-TOTP 2nd Factor Authentication

	Universal 2nd Factor Authentication (U2F)

	TOTP 2nd Factor Authentication

	E-Mail as Second Factor

	External Second Factor

	Radius as Second Factor

	REST Second Factor

	Yubikey Second Factor

	Additional Second Factors

Active Directory

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

The Active Directory module is based on
LDAP module, with the following features:

	Specific default values for filters to match AD schema

	Compatible password modification

	Reset password on next logon workflow

Configuration

The configuration is the same as the LDAP module.

AD password policy

AD password policy does not follow the LDAP RFC, but Microsoft has
implemented its own policy. LemonLDAP::NG implements partially the
policy:

	when pwdLastSet = 0 in the user entry, it means that password has
been reset, and a form is displayed to the user to change his
password.

	when computed virtual attribute ‘msDS-User-Account-Control-Computed’
as 6th flag set to 8, the password is considered expired (support
from Windows Server 2003). It is too late for the user to do
anything. He must contact his administrator.

	a warning before password expiration is possible in AD, but only in
GPO (Computer ConfigurationWindows SettingsLocal PoliciesSecurity
Options under Interactive Logon: Prompt user to change password
before expiration). However it as no reality in LDAP referential. A
“password warning time before password expiration” variable can be
specified in LemonLDAP::NG to do so.

Attention

Note: since AD 2012, each user can have a specific
password expiration policy. Then, the “maximum password age” can have
different values. This is currently unsupported in LemonLDAP::NG because
every policy must be computed with their precedence to know which
maximum password age to apply.

To configure warning before password expiration, you must set two
variables in Active Directory parameters in Manager:

	Password max age : number of seconds after the last password
change, before it expires. It must match AD policy

	Password expire warning : number of seconds between password
expiration and the date from which user is warned his password will
expire.

Apache

	Authentication

	Users

	Password

	✔

	
	

Presentation

LL::NG can delegate authentication to Apache, so it is possible to use
any Apache authentication
module [http://httpd.apache.org/docs/current/howto/auth.html], for
example Kerberos, Radius, OTP, etc.

Attention

To authenticate users by using Kerberos, you can now use
the new Kerberos authentication module which allow
one to chain Kerberos in a combination

Tip

Apache authentication module will set the REMOTE_USER
environment variable, which will be used by LL::NG to get authenticated
user.

Configuration

LL::NG

In General Parameters > Authentication modules, choose Apache as
authentication backend.

You may want to failback to another authentication backend in case of
the Apache authentication fails. Use then the
Multiple authentication module, for example:

Apache;LDAP

Tip

In this case, the Apache authentication module should not
require a valid user and not be authoritative, else Apache server will
return an error and not let LL::NG Portal manage the failback
authentication.

Apache

The Apache configuration depends on the module you choose, you need to
look at the module documentation, for example:

	Kerberos [http://modauthkerb.sourceforge.net/]

	NTLM [http://search.cpan.org/~speeves/Apache2-AuthenNTLM-0.02/AuthenNTLM.pm]

	Radius [http://freeradius.org/mod_auth_radius/]

	…

Tips

Kerberos

The Kerberos configuration is quite complex. You can find some
configuration tips on this page.

Tip

Prefer new Kerberos module.

Compatibility with Identity Provider modules

When using IDP modules (like CAS or SAML), the activation of Apache
authentication can alter the operation. This is because the client often
need to request directly the IDP, and the Apache authentication will
block the request.

In this case, you can add in the Apache authentication module:

Satisfy any
Order allow,deny
allow from APPLICATIONS_IP

This will bypass the authentication module for request from
APPLICATIONS_IP.

CAS

	Authentication

	Users

	Password

	✔

	
	

Presentation

LL::NG can delegate authentication to a CAS server. This requires Perl
CAS module [http://sourcesup.cru.fr/projects/perlcas/].

Tip

LL::NG can also act as CAS server, that allows
one to interconnect two LL::NG systems.

LL::NG can also request proxy tickets for its protected services. Proxy
tickets will be collected at authentication phase and stored in user
session under the form:

_casPT<serviceID> = Proxy ticket value

They can then be forwarded to applications through
HTTP headers.

Tip

CAS authentication will automatically add a
logout forward rule on CAS server logout URL in
order to close CAS session on LL::NG logout.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose CAS for authentication.

Tip

You can then choose any other module for users and
password.

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Then, go in CAS parameters:

	Authentication level: authentication level for this module.

Then create the list of CAS servers in the manager. For each, set:

	Server URL (required): CAS server URL (must use https://)

	Renew authentication (default: disabled): force authentication
renewal on CAS server

	Gateways authentication (default: disabled): force transparent
authentication on CAS server

	Display Name: Name to display. Required if you have more than 1
CAS server declared

	Icon: Path to CAS Server icon. Used only if you have more than 1
CAS server declared

	Order: Number to sort CAS Servers display

	Proxied services: list of services for which a proxy ticket is
requested:

	Key: Service ID

	Value Service URL (CAS service identifier)

Tip

If no proxied services defined, CAS authentication will not
activate the CAS proxy mode with this CAS server.

Databases

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

Drivers

LL::NG can use a lot of databases as authentication, users and password
backend:

	MariaDB/MySQL

	PostGreSQL

	Oracle

	…

Indeed, any Perl DBD
driver [http://search.cpan.org/search?query=DBD%3A%3A&mode=module]
can be used.

Schema

LL::NG can use two tables:

	Authentication table: where login and password are stored

	User table: where user data are stored (mail, name, etc.)

Tip

Authentication table and user table can be the same.

The password can be in plain text, or encoded with a standard SQL
method:

	SHA

	SHA1

	MD5

Example 1: two tables

Authentication table

	id

	login

	password

	0

	coudot

	1f777a6581e478499f4284e54fe2d4a4e513dfff

	1

	xguimard

	a15a18c8bb17e6f67886a9af1898c018b9f5a072

	2

	tchemineau

	1f777a6581e478499f4284e54fe2d4a4e513dfff

User table

	id

	user

	name

	mail

	0

	coudot

	Clément OUDOT

	coudot@example.com

	1

	tchemineau

	Thomas CHEMINEAU

	tchemineau@example.com

	2

	xguimard

	Xavier GUIMARD

	xguimard@example.com

Example 2: single table

	id

	user

	password

	name

	mail

	0

	coudot

	1f777a6581e478499f4284e54fe2d4a4e513dfff

	Clément OUDOT

	coudot@example.com

	1

	tchemineau

	1f777a6581e478499f4284e54fe2d4a4e513dfff

	Thomas CHEMINEAU

	tchemineau@example.com

	2

	xguimard

	a15a18c8bb17e6f67886a9af1898c018b9f5a072

	Xavier GUIMARD

	xguimard@example.com

SQL

LL::NG will operate some SQL queries:

	Authentication: select row in authentication table matching user and
password

	Search user: select row in user table matching user

	Change password: update password column in authentication table
matching user

Configuration

In Manager, go in General Parameters > Authentication modules
and choose Database (DBI) for authentication, users and/or password
modules.

Authentication level

The authentication level given to users authenticated with this module.

Attention

As DBI is a login/password based module, the
authentication level can be:

	increased (+1) if portal is protected by SSL (HTTPS)

	decreased (-1) if the portal autocompletion is allowed (see
portal customization)

Exported variables

List of columns to query to fill user session. See also
exported variables configuration.

Connection

Tip

Connection settings can be configured differently for
authentication process and user process. This allows one to use
different databases for these process. By default, if user process
connection settings are empty, authentication process connection
settings will be used.

	Chain: DBI chain, including database driver name and database
name (for example: dbi:mysql:database=lemonldapng;host=localhost).

	User: Connection user

	Password: Connection password

Schema

	Authentication table: authentication table name

	User table: user table name

	Login field name: name of authentication table column hosting
login

	Password field name: name of authentication table column hosting
password

	Mail field name: name of authentication table column hosting mail
(for password reset)

	Login field name in user table: name of user table column hosting
login

Password

	Hash schema: SQL method for hashing password. Can be left blank
for plain text passwords.

	Dynamic hash activation: Activate dynamic hashing. With dynamic
hashing, the hash scheme is recovered from the user password in the
database during authentication.

	Supported non-salted schemes: List of whitespace separated hash
schemes. Every hash scheme MUST match a non-salted hash function in
the database. LemonLDAP::NG relies on this hashing function for
computing user password hashes. These hashes MUST NOT be salted (no
random data used in conjunction with the password).

	Supported salted schemes: List of whitespace separated salted
hash schemes, of the form “sscheme”, where scheme MUST match a
non-salted hash function in the database. LemonLDAP::NG relies on
this hashing function for computing user password hashes. Salted and
non-salted scheme lists are not necessarily equivalent. (for example:
non-salted=”sha256” and salted=”ssha ssha512” is valid)

	Dynamic hash scheme for new passwords: LemonLDAP::NG is able to
store new passwords in the database (while modifying or
reinitializing the password). You can choose a salted or non salted
dynamic hashed password. The value must be an element of “Supported
non-salted schemes” or “Supported salted schemes”.

Attention

The SQL function MUST have hexadecimal values as input
AND output

Tip

Here is an example for creating a postgreSQL SHA256 function.
1. Install postgresql-contrib. 2. Activate extension:
CREATE EXTENSION pgcrypto; 3. Create the hash function:

CREATE OR REPLACE FUNCTION sha256(varchar) returns text AS $$
SELECT encode(digest(decode($1, 'hex'), 'sha256'), 'hex')
$$ LANGUAGE SQL STRICT IMMUTABLE;

Demonstration

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

This mode allow one to test LemonLDAP::NG without any third-party
software.

Danger

This mode must not be used for other purpose than test and
demonstration!

Demonstration backend has hard coded user accounts:

	Login

	Password

	Mail

	Role

	rtyler

	rtyler

	rtyler@badwolf.org

	user

	msmith

	msmith

	msmith@badwolf.org

	user

	dwho

	dwho

	dwho@badwolf.org

	administrator

Note

As you may have guessed, these accounts are famous characters from
the TV show Doctor
Who [http://en.wikipedia.org/wiki/Doctor_Who].

The AuthDemo and UserDBDemo will allow you to log in and get the
standard attributes (uid, cn and mail). The PasswordDBDemo will allow
you to change the password with some basic checks, but as the data are
hard coded, the password will never be really changed.

Configuration

Select Demonstration for authentication, user and password backend.

You can also modify list of exported variables. Only uid, cn and mail
attributes are available. See also
exported variables configuration.

Facebook

	Authentication

	Users

	Password

	✔

	✔

	

Presentation

Facebook [http://facebook.com] is a famous social network service.
Facebook uses OAuth2 [http://en.wikipedia.org/wiki/OAuth2] protocol
to allow applications to reuse its own authentication process (it means,
if your are connected to Facebook, other applications can trust Facebook
and let you in).

You need
Net::Facebook::Oauth2 [https://metacpan.org/release/Net-Facebook-Oauth2]
package.

You need to register a new application on Facebook to get an application
ID and a secret. See https://developers.facebook.com/apps on how to do
that.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose Facebook for authentication module. You can also use Facebook
as user database.

Then, go in Facebook parameters:

	Authentication level: authentication level for this module.

	Facebook application ID: the application ID you get

	Facebook application secret: the corresponding secret

	User field: Facebook field that will be used as default user
identifier

If you use Facebook as user database, declare values in exported
variables:

	use any key name you want. If you want to refuse access when a data
is missing, just add a “!” before the key name

	in the value field, set the field name. You can show them using
Facebook Graph API
explorer [https://developers.facebook.com/tools/explorer] and have
a list of supported fields in the Graph API User
reference [https://developers.facebook.com/docs/graph-api/reference/user/].
For example:

	cn => name

	mail => email

	sn => last_name

Attention

Do not query user field in exported variables, as it is
already registered by the authentication module in $_user.

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Tip

You can use the same Facebook access token in your
applications. It is stored in session datas under the name
$_facebookToken

GitHub

	Authentication

	Users

	Password

	✔

	
	

Presentation

GitHub [https://github.com/] uses
OAuth2 [http://en.wikipedia.org/wiki/OAuth2] protocol to allow
applications to reuse its own authentication process (see
https://developer.github.com/apps/building-oauth-apps/authorizing-oauth-apps/).

You need to register a new application on LinkedIn to get an application
ID and a secret: https://github.com/settings/apps/new.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose GitHub for authentication module.

Then, go in GitHub parameters:

	Authentication level: authentication level for this module.

	Client ID: the application ID you get

	Client secret: the corresponding secret

	Field containing user identifier: Field that will be used as main
user identifier in LL::NG, usually login

	Scope: OAuth 2.0 scopes, see
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/

Tip

Collected fields are stored in session in github_
keys

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in:

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Databases

	Authentication

	Users

	Password

	✔

	
	

Presentation

LLNG can use GPG to authenticate users. It is not useful for day-to-day
authentication but can be used for example if user has lost his
password. The login form will ask user to sign a challenge and post
result.

Configuration of LemonLDAP::NG

In Manager, go in General Parameters > Authentication modules
and choose GPG for authentication, users and/or password modules. Then
you just have to set GPG database. For example
/usr/share/keyrings/debian-keyring.gpg

Tip

You can then choose any other module for users and
password.

Then, go in GPG parameters:

	Authentication level: authentication level for this module

	GPG database: database to store users GPG public key

Kerberos

	Authentication

	Users

	Password

	✔

	
	

Presentation

Kerberos [https://en.wikipedia.org/wiki/Kerberos_(protocol)] is a
network authentication protocol used to authenticate users based on
their desktop session.

LL::NG uses GSSAPI module to validate Kerberos ticket against a local
keytab.

LLNG Configuration

In Manager, go in General Parameters > Authentication modules
and choose Kerberos for authentication. Then go to “Kerberos parameters”
and configure the following parameters:

	keytab file (required): the Kerberos keytab file

	Use Ajax request: set to “enabled” if you want to use an Ajax
request instead of a direct Kerberos attempt. This is required if
you want to chain Kerberos in a combination

	Kerberos authentication level: default to 3

	Use Web Server Kerberos module: set to “enabled” to use the Web
Server module (for example Apache mod_auth_kerb) instead of Perl
Kerberos code to validate Kerberos ticket

	Remove domain in username: set to “enabled” to strip username
value and remove the ‘@domain’.

	Allowed domains: if set, tickets will only be accepted if they come from one of the domains listed here. This is a space-separated list. This feature can be useful when using combination and cross-realm Kerberos trusts.

Attention

	Due to a perl GSSAPI issue, you may need to copy the keytab in
/etc/krb5.keytab which is the default location hardcoded in the
library

	As Kerberos ticket is passed inside Authorization header, you may
need to set CGIPassAuth on in Apache (with old Apache, use
RewriteCond %{HTTP:Authorization} followed by
RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}])

Kerberos configuration

The Kerberos configuration is quite complex. You can find some
configuration tips on this page.

Web Server Kerberos module

If you want to let Web Server Kerberos module validates the Kerberos
ticket, set the according option to “enabled” and configure the portal
virtual host to launch the module if “kerberos” GET parameter is in the
request.

Example with Apache and mod_auth_kerb:

<If "%{QUERY_STRING} =~ /kerberos=/">
 <IfModule auth_kerb_module>
 AuthType Kerberos
 KrbMethodNegotiate On
 KrbMethodK5Passwd Off
 KrbAuthRealms EXAMPLE.COM
 Krb5KeyTab /etc/lemonldap-ng/auth.keytab
 KrbVerifyKDC On
 KrbServiceName Any
 require valid-user
 </IfModule>
</If>

LDAP

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

LL::NG can use an LDAP directory to:

	authenticate user

	get user attributes

	get groups where user is registered

	change password (with server side password policy management)

This works with every LDAP v2 or v3 server, including
Active Directory.

LL::NG is compatible with LDAP password
policy [https://opends.dev.java.net/public/standards/draft-behera-ldap-password-policy.txt]:

	LDAP server can check password strength, and LL::NG portal will
display correct errors (password too short, password in history,
etc.)

	LDAP sever can block brute-force attacks, and LL::NG will display
that account is locked

	LDAP server can force password change on first connection, and LL::NG
portal will display a password change form before opening SSO session

Configuration

In Manager, go in General Parameters > Authentication modules
and choose LDAP for authentication, users and/or password modules.

Tip

For Active Directory, choose
Active Directory instead of LDAP.

Authentication level

The authentication level given to users authenticated with this module.

Attention

As LDAP is a login/password based module, the
authentication level can be:

	increased (+1) if portal is protected by SSL (HTTPS)

	decreased (-1) if the portal autocompletion is allowed (see
portal customization)

Exported variables

List of attributes to query to fill user session. See also
exported variables configuration.

Connection

	Server host: LDAP server hostname or URI (by default: localhost).
Accept some specificities:

	More than one server can be set here separated by spaces or
commas. They will be tested in the specified order.

	To use TLS, set ldap+tls://server and to use LDAPS, set
ldaps://server instead of server name.

	If you use TLS, you can set any of the
Net::LDAP [http://search.cpan.org/~gbarr/perl-ldap/lib/Net/LDAP.pod]
start_tls() sub like
ldap+tls://server/verify=none&capath=/etc/ssl. You can
also use cafile and capath parameters.

	Server port: TCP port used by LDAP server if different from the standard
ports. Can also be specified in the server host URI.

	Verify LDAP server certificate: It is highly recommended to verify the
identity of the remote server. This setting is only enforced for LDAPS or
TLS connections.

	Users search base: Base of search in the LDAP directory.

	Account: DN used to connect to LDAP server. By default, anonymous
bind is used.

	Password: password to used to connect to LDAP server. By default,
anonymous bind is used.

	Connection timeout: applies only when initiating the connection

	Operation timeout: applies to all LDAP operations

	Version: LDAP protocol version.

	Binary attributes: regular expression matching binary attributes
(see
Net::LDAP [http://search.cpan.org/~gbarr/perl-ldap/lib/Net/LDAP.pod]
documentation).

	CA file path: This allows you to override the default system-wide
certificate authorities by giving a single file containing the CA used by the
LDAP server.

	CA directory path: This allows you to override the default system-wide
certificate authorities by giving the path of a directory containing your
trusted certificates.

Attention

LemonLDAP::NG need anonymous access to LDAP Directory
RootDSE in order to check LDAP connection.

Filters

Tip

In LDAP filters, $user is replaced by user login, and $mail by
user email.

	Default filter: default LDAP filter for searches, should not be
modified.

	Authentication filter: Filter to find user from its login
(default: (&(uid=$user)(objectClass=inetOrgPerson)))

	Mail filter: Filter to find user from its mail (default:
(&(mail=$mail)(objectClass=inetOrgPerson)))

	Alias dereference: How to manage LDAP aliases. (default:
find)

Tip

For Active Directory, the default authentication filter is:

(&(sAMAccountName=$user)(objectClass=person))

And the mail filter is:

(&(mail=$mail)(objectClass=person))

Groups

	Search base: DN of groups branch. If no value, disable group
searching.

	Object class: objectClass of the groups (default: groupOfNames).

	Target attribute: name of the attribute in the groups storing the
link to the user (default: member).

	User source attribute: name of the attribute in users entries
used in the link (default: dn).

	Searched attributes: name(s) of the attribute storing the name of
the group, spaces separated (default: cn).

	Decode searched value: with Active Directory, member DN value is
sometimes bad decoded and groups are not found, activate this option
to force value decoding.

	Recursive: activate recursive group functionality (default: 0).
If enabled, if the user group is a member of another group (group of
groups), all parents groups will be stored as user’s groups.

	Group source attribute: name of the attribute in groups entries
used in the link, for recursive group search (default: dn).

Note

The groups that the user belongs to are available as $groups
and %hGroups, as documented here

Attention

If your LDAP countains over a thousand groups, you
should avoid using group processing, check out
the performance page for
alternatives

Password

	Password policy control: enable to use LDAP password policy. This
requires at least Net::LDAP 0.38. (see ppolicy workflow below)

	Password modify extended operation: enable to use the LDAP
extended operation password modify instead of standard modify
operation.

	Change as user: enable to perform password modification with
credentials of connected user. This requires to request user old
password (see portal customization).

	LDAP password encoding: can allow one to manage old LDAP servers
using specific encoding for passwords (default: utf-8).

	Use reset attribute: enable to use the password reset attribute.
This attribute is set by LemonLDAP::NG when
password was reset by mail and the user choose
to generate the password (default: enabled).

	Reset attribute: name of password reset attribute (default:
pwdReset).

	Reset value: value to set in reset attribute to activate password
reset (default: TRUE).

	Allow a user to reset his expired password: if activated, the
user will be prompted to change password if his password is expired
(default: disabled)

	
	Search for user before password change: this option forces the password
	change module to search for the user again, refreshing its DN. This feature
is only useful in rare cases when you use LDAP as the password module, but
not as the UserDB module. (default: enabled)

	IBM Tivoli DS support: enable this option if you use ITDS. LL::NG
will then scan error message to return a more precise error to the
user.

Password expiration warning workflow [image: image0] Password expiration
workflow [image: image1]

LinkedIn

	Authentication

	Users

	Password

	✔

	
	

Presentation

LinkedIn [https://www.linkedin.com/] is a professional social
network. It uses OAuth2 [http://en.wikipedia.org/wiki/OAuth2]
protocol to allow applications to reuse its own authentication process
(see https://developer.linkedin.com/docs/oauth2).

You need to register a new application on LinkedIn to get an application
ID and a secret. See https://www.linkedin.com/developer/apps/ on how to
do that.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose LinkedIn for authentication module.

Then, go in LinkedIn parameters:

	Authentication level: authentication level for this module.

	Client ID: the application ID you get

	Client secret: the corresponding secret

	Searched fields (deprecated): Fields requested on People endpoint
in v1, no more used in v2 API

	Field containing user identifier: Field that will be used as main
user identifier in LL::NG, usually id (LinkedIn numeric
identifer) or emailAddress.

	Scope: OAuth 2.0 scopes, use r_liteprofile to get first name
and last name, and r_emailaddress to get email.

Tip

Collected fields are stored in session in linkedIn_
keys

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Null

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

LL::NG Null backend is a transparent backend:

	Authentication: will create session without prompting any credentials
(but will register client IP and creation date)

	Users: will not collect any data (but you can still register
environment variables in session)

	Password: will not change any password

You can use Null backend to bypass some authentication process steps.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose Null for authentication, users or password module.

Then, go in Null parameters:

	Authentication level: authentication level for this module.

OpenID Connect

	Authentication

	Users

	Password

	✔

	✔

	

Presentation

Note

OpenID Connect is a protocol based on REST, OAuth 2.0 and JOSE
stacks. It is described here: http://openid.net/connect/.

LL::NG can act as an OpenID Connect Relying Party (RP) towards multiple
OpenID Connect Providers (OP). It will get the user identity through an
ID Token, and grab user attributes through UserInfo endpoint.

As an RP, LL::NG supports a lot of OpenID Connect features:

	Authorization Code flow

	Automatic download of JWKS

	JWT signature verification

	Access Token Hash verification

	ID Token validation

	Get UserInfo as JSON or as JWT

	Logout on EndSession end point

You can use this authentication module to link your LL::NG server to any
OpenID Connect Provider. Here are some examples, witch their specific
documentation:

	Google

	France Connect

	[image: google]

	[image: franceconnect]

Attention

OpenID-Connect specification is not finished for logout
propagation. So logout initiated by relaying-party will be forward to
OpenID-Connect provider but logout initiated by the provider (or another
RP) will not be propagated. LLNG will implement this when spec will be
published.

Configuration

OpenID Connect Service

See OpenIDConnect service configuration
chapter.

Authentication and UserDB

In General Parameters > Authentication modules, set:

	Authentication module: OpenID Connect

	Users module: OpenID Connect

Tip

As passwords will not be managed by LL::NG, you can disable
menu password module.

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Then in General Parameters > Authentication modules >
OpenID Connect parameters, you can set:

	Authentication level: level of authentication to associate to
this module

	Callback GET parameter: name of GET parameter used to intercept
callback (default: openidconnectcallback)

	State session timeout: duration of a state session (used to keep
state information between authentication request and authentication
response) in seconds (default: 600)

Register LL::NG to an OpenID Connect Provider

To register LL::NG, you will need to give some information like
application name or logo.

You will be asked to provide a Redirect URI for LemonLDAP::NG, which is constructed by appending the openidcallback=1 parameter to the Portal URL.

For example:

	https://auth.example.com/?openidcallback=1

Attention

If you use the choice backend,
you need to set SameSite cookie value to “Lax” or “None”.
See SSO cookie parameters

After registration, the OP must give you a client ID and a client
secret, that will be used to configure the OP in LL::NG.

Declare the OpenID Connect Provider in LL::NG

In the Manager, select node OpenID Connect Providers and click on
Add OpenID Connect Provider. Give a technical name (no spaces, no
special characters), like “sample-op”;

You can then access to the configuration of this OP.

Metadata

The OP should publish its metadata in a JSON file (see for example
Google
metadata [https://accounts.google.com/.well-known/openid-configuration]).
Copy the content of this file in the textarea.
Portal discovery document can be found here:
https://#portal#/.well-known/openid-configuration

If no metadata is available, you need to write them in the textarea.
Mandatory fields are:

	issuer

	authorization_endpoint

	token_endpoint

	userinfo_endpoint

You can also define:

	jwks_uri

	endsession_endpoint

Example template:

{
 "issuer": "https://auth.example.com/",
 "authorization_endpoint": "https://auth.example.com/oauth2/authorize",
 "token_endpoint": "https://auth.example.com/oauth2/token",
 "userinfo_endpoint": "https://auth.example.com/oauth2/userinfo",
 "end_session_endpoint":"https://auth.example.com/oauth2/logout"
}

JWKS data

JWKS is a JSON file containing public keys. LL::NG can grab them
automatically if jwks_uri is defined in metadata. Else you can paste the
content of the JSON file in the textarea.

Tip

If the OpenID Connect provider only uses symmetric encryption,
JWKS data is not useful.

Exported attributes

Define here the mapping between the LL::NG session content and the
fields provided in UserInfo response. The fields are defined in OpenID
Connect
standard [http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims],
and depends on the scope requested by LL::NG (see options in next
chapter).

OpenID Connect claims

	Claim name

	Associated scope

	Type

	Example of corresponding LDAP attribute

	sub

	openid

	string

	uid

	name

	profile

	string

	cn

	given_name

	profile

	string

	givenName

	family_name

	profile

	string

	sn

	middle_name

	profile

	string

	

	nickname

	profile

	string

	

	preferred_username

	profile

	string

	displayName

	profile

	profile

	string

	labeledURI

	picture

	profile

	string

	

	website

	profile

	string

	

	email

	email

	string

	mail

	email_verified

	email

	boolean

	

	gender

	profile

	string

	

	birthdate

	profile

	string

	

	zoneinfo

	profile

	string

	

	locale

	profile

	string

	preferredLanguage

	phone_number

	phone

	string

	telephoneNumber

	phone_number_verified

	phone

	boolean

	

	updated_at

	profile

	string

	

	formatted

	address

	string

	registeredAddress

	street_address

	address

	string

	street

	locality

	address

	string

	l

	region

	address

	string

	st

	postal_code

	address

	string

	postalCode

	country

	address

	string

	co

So you can define for example:

	cn => name

	sn => family_name

	mail => email

	uid => sub

Options

	Configuration:

	Configuration endpoint: URL of OP configuration endpoint

	JWKS data timeout: After this time, LL::NG will do a request
to get a fresh version of JWKS data. Set to 0 to disable it.

	Client ID: Client ID given by OP

	Client secret: Client secret given by OP

	Store ID token: Allows one to store the ID token (JWT) inside
user session. Do not enable it unless you need to replay this token
on an application, or if you need the id_token_hint parameter when
using logout.

	Protocol:

	Scope: Value of scope parameter (example: openid profile). The
openid scope is mandatory.

	Display: Value of display parameter (example: page)

	Prompt: Value of prompt parameter (example: consent)

	Max age: Value of max_age parameter (example: 3600)

	UI locales: Value of ui_locales parameter (example: en-GB en
fr-FR fr)

	ACR values: Value acr_values parameters (example: loa-1)

	Token endpoint authentication method: Choice between
client_secret_post and client_secret_basic

	Check JWT signature: Set to 0 to disable JWT signature
checking

	ID Token max age: If defined, LL::NG will check the date of ID
token and refuse it if it is too old

	Use Nonce: If enabled, a nonce will be sent, and verified from
the ID Token

	Display:

	Display name: Name of the application

	Logo: Logo of the application

	Order: Number to sort buttons

Google

[image: image0]

Presentation

Do you we have to present Google [http://www.google.com]? The good
news is that Google is a standard OpenID Provider, and so you can easily
delegate the authentication of LL::NG to Google:
https://developers.google.com/identity/protocols/OpenIDConnect

Attention

Google does not support logout through OpenID Connect. If
you close your session on LL::NG side, your Google session will still be
open.

Register on Google

You need a Google developer account to access to
https://console.developers.google.com/

Here you can go in API Manager and get new credentials (client_id
and client_secret).

You need to provide the callback URLs, for example
https://auth.domain.com/?openidcallback=1.

Declare Google in your LL::NG server

Go in Manager and create a new OpenID Connect provider. You can call it
google for example.

Click on Metadata, and use the OpenID Connect configuration URL to
load them: https://accounts.google.com/.well-known/openid-configuration.

You can also load the JWKS data from the URL
https://www.googleapis.com/oauth2/v3/certs. But as Google rotate their
keys, we will also configure a refresh interval on JKWS data.

Go in Exported attributes to choose which attributes you want to
collect. Google supports these claims:

	email

	email_verified

	family_name

	given_name

	locale

	name

	picture

	sub

Now go in Options:

	In Configuration, register the client_id and
client_secret given by Google. Set also the configuration URI
with https://accounts.google.com/.well-known/openid-configuration,
and JWKS refresh, for example every day: 86400.

	In Protocol, adapt the scope to the exported attributes you
want. You can for example use openid profile email.

	In Display, you can set the name and the logo

France Connect

[image: image0]

Presentation

France Connect [https://doc.integ01.dev-franceconnect.fr/] is an
authentication platform made by French government.

Attention

It is for the moment only in BETA stage. This
documentation will explain how to configure LL::NG with the developer
reserved space.

Register on France Connect

Once OpenID Connect service is configured,
you need to register to France Connect.

Use the following form:
https://doc.integ01.dev-franceconnect.fr/inscription.

You need to provide the callback URLs, for example
https://auth.domain.com/?openidcallback=1.

You will then get a client_id and a client_secret.

Declare France Connect in your LL::NG server

Go in Manager and create a new OpenID Connect provider. You can call it
france-connect for example.

Click on Metadata and set manually the metadata of the service,
using France Connect
endpoints [https://doc.integ01.dev-franceconnect.fr/fournisseur-service].
For example:

{
"issuer": "https://fcp.integ01.dev-franceconnect.fr",
"authorization_endpoint": "https://fcp.integ01.dev-franceconnect.fr/api/v1/authorize",
"token_endpoint": "https://fcp.integ01.dev-franceconnect.fr/api/v1/token",
"userinfo_endpoint": "https://fcp.integ01.dev-franceconnect.fr/api/v1/userinfo",
"end_session_endpoint":"https://fcp.integ01.dev-franceconnect.fr/api/v1/logout"
}

You can skip JWKS data, they are not provided by France Connect. The
security relies on the symmetric key client_secret.

Go in Exported attributes to choose which attributes from “identité
pivot” you want to collect. See
https://doc.integ01.dev-franceconnect.fr/identite-pivot

Now go in Options:

	In Configuration, register the client_id and
client_secret given by France Connect

	In Protocol, adapt the scope to the exported attributes you
want. See https://doc.integ01.dev-franceconnect.fr/fs-scopes

	In Display, you can set the name and the logo

PAM

	Authentication

	Users

	Password

	✔

	
	

Presentation

LL::NG can use Pluggable authentication
module [https://en.wikipedia.org/wiki/Pluggable_authentication_module]
as a simple authentication backend.

Configuration

Install Authen::PAM

You have to install the corresponding Perl module.

For CentOS/RHEL:

yum install perl-Authen-PAM

In Debian/Ubuntu, install the library through apt-get command

apt-get install libauthen-pam-perl

Configuration of LemonLDAP::NG

In Manager, go in General Parameters > Authentication modules
and choose PAM for authentication.

Tip

You can then choose any other module for users and
password.

Then, go in PAM parameters:

	Authentication level: authentication level for PAM module

	PAM service: the PAM service to use (default: login)

Proxy

	Authentication

	Users

	Password

	✔

	✔

	

Presentation

LL::NG is able to send (through REST or SOAP) authentication
credentials to another LL::NG portal, like a proxy.

The difference with remote authentication is that the
client will never be redirect to the main LL::NG portal. This
configuration is usable if you want to expose your internal SSO portal
to another network (DMZ).

Configuration

External portal

In Manager, go in General Parameters > Authentication modules
and choose Proxy for authentication and users.

Then, go in Proxy parameters:

	Internal portal URL: URL of internal portal

	Session service URL (optional): Session service URL (default:
same as previous for SOAP, same with “/session/my” for REST)

	Cookie name (optional): name of the cookie of internal portal, if
different from external portal

	Authentication level: authentication level for Proxy module

	Use SOAP instead of REST: use a deprecated SOAP server instead of
a REST one (you must set it if internal portal version is < 2.0). In
this case, “Portal URL” parameter must contain SOAP endpoint
(generally http://auth.example.com/index.pl/sessions for 1.9 and
earlier, http://auth.example.com/sessions for 2.0)

Internal portal

The portal must be configured to accept REST or SOAP authentication
requests if you chose to use SOAP. See:
REST server plugin or
SOAP session backend (deprecated).

SOAP compatibility with 1.9 server

If your Proxy is a 2.0.x and your server is a 1.9.x, you should add this
in your lemonldap-ng.ini:

soapProxyUrn = urn:Lemonldap/NG/Common/CGI/SOAPService

Attention

This feature needs at least LLNG version 2.0.8

Radius

	Authentication

	Users

	Password

	✔

	
	

Presentation

LL::NG uses Perl
Authen::Radius [http://search.cpan.org/~manowar/RadiusPerl-0.12/Radius.pm]
as a simple authentication backend.

Currently, the module is simply handling a Radius Authentication request
and has been tested only against a FreeRadius server.

Configuration

Install Authen::Radius

You have to install the corresponding Perl module.

For CentOS/RHEL:

yum install perl-Authen-Radius

In Debian/Ubuntu, install the library through apt-get command

apt-get install libauthen-radius-perl

Configuration of LemonLDAP::NG

In Manager, go in General Parameters > Authentication modules
and choose Radius for authentication.

Tip

You can then choose any other module for users and
password.

Then, go in Radius parameters:

	Authentication level: authentication level for Radius module

	Shared secret: this is the passphrase to use to connect to the
Radius server

	Server hostname: this is the hostname or IP address of the Radius
server

REST

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

This backend can be used to delegate authentication to some webservices.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose REST for authentication, users and/or password modules.

Then, go in REST parameters and you just have to set REST URL to
provide wanted services:

	Module

	Parameter

	Authentication level

	Authentication level for this module

	Authentication

	Authentication URL

	User database

	User data URL

	Password confirmation

	Password confirmation URL

	Password change

	Password change URL

Tip

You can then choose any other module for users and
password.

REST Dialog

LemonLDAP::NG will call the endpoints you declared at various steps
during the login process.

The request performed by LemonLDAP::NG is a POST on the URL you
specified, the content of the POST is a JSON document
(Content-Type: application/json).

REST web services must respond with a success HTTP code (200), and the
response must be a JSON document containing a result key.
Auth/UserDB endpoints can add an info array that will be stored in
session data (without reading “Exported variables”).

	URL

	Query

	Response

	Authentication URL

	{"user":$user,"password":$password}

	{"result":true/false,"info":{...}}

	User data URL

	{"user":$user}

	{"result":true/false,"info":{"uid":"dwho",...}}

	Password confirmation URL

	{"user":$user,"password":$password}

	{"result":true/false}

	Password change URL

	{"user":$user,"password":$password}

	{"result":true/false}

Tip

To have only one REST call during the login process, you can
set REST only as an Authentication backend, configure Null as your User
Database, and make sure the REST authentication URL send all your user
attributes in the info response key

SAML

	Authentication

	Users

	Password

	✔

	✔

	

Presentation

LL::NG can use SAML2 to get user identity and grab some attributes
defined in user profile on its Identity Provider (IDP). In this case,
LL::NG acts like an SAML2 Service Provider (SP).

Several IDPs are allowed, in this case the user will choose the IDP he
wants. You can preselect IDP with an IDP resolution rule.

For each IDP, you can configure attributes that are collected. Some can
be mandatory, so if they are not returned by IDP, the session will not
open.

Tip

LL::NG can also act as SAML IDP, that allows
one to interconnect two LL::NG systems.

Configuration

SAML Service

See SAML service configuration chapter.

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Authentication and UserDB

In General Parameters > Authentication modules, set:

	Authentication module: SAML v2

	Users module: Same (eq SAML)

Tip

As passwords will not be managed by LL::NG, you can disable
menu password module.

Register LemonLDAP::NG on partner Identity Provider

After configuring SAML Service, you can export metadata to your partner
Identity Provider.

They are available at the EntityID URL, by default:
http://auth.example.com/saml/metadata. You can also use
http://auth.example.com/saml/metadata/sp to have only SP related
metadata.

Register partner Identity Provider on LemonLDAP::NG

In the Manager, select node SAML identity providers and click on
Add SAML IDP. The IDP name is asked, enter it and click OK.

Metadata

You must register IDP metadata here. You can do it either by uploading
the file, or get it from IDP metadata URL (this require a network link
between your server and the IDP):

[image: image0]

Tip

You can also edit the metadata directly in the textarea

Exported attributes

For each attribute, you can set:

	Variable name: name of the variable in LemonLDAP::NG session that will contain this attribute. For example
“uid” will then be used as $uid in access rules

	Attribute name: name of the SAML attribute coming from the remote IDP

	Friendly Name: optional, SAML attribute friendly name.

	Mandatory: if set to On, then session will not open if this
attribute is not given by IDP.

	Format (optional): SAML attribute format.

[image: image1]

Options

General options

	Resolution Rule: rule that will be applied to preselect an IDP
for a user. You have access to all environment variable (like user
IP address) and all session keys.

For example, to preselect this IDP for users coming from 129.168.0.0/16
network and member of “admin” group:

$ENV{REMOTE_ADDR} =~ /^192\.168/ and $groups =~ /\badmin\b/

Authentication request

	NameID format: force NameID format here (email, persistent,
transient, etc.). If no value, will use first NameID Format activated
in metadata.

	Force authentication: set ForceAuthn flag in authentication
request

	Passive authentication: set IsPassive flag in authentication
request

	Allow proxied authentication: allow an authentication response to
be issued from another IDP that the one we register (proxy IDP). If
you disallow this, you should also disallow direct login form IDP,
because proxy restriction is set in authentication requests.

	Allow login from IDP: allow a user to connect directly from an
IDP link. In this case, authentication is not a response to an issued
authentication request, and we have less control on conditions.

	Requested authentication context: this context is declared in
authentication request. When receiving the request, the real
authentication context will be mapped to an internal authentication
level (see
how configure the mapping),
that you can check to allow or deny session creation.

	Allow URL as RelayState: Set to On if the RelayState value sent
by IDP is the URL where the user must be redirected after
authentication.

Session

	Adapt session lifetime: session lifetime will be adapted from
SessionNotOnOrAfter value found in authentication response. It
means that if the IDP propose to close session earlier than the
default LemonLDAP::NG timeout, the session _utime will be modified
so that session is erased at the date indicated by the IDP.

	Force UTF-8: this will force UTF-8 conversion of attributes
values collected from IDP.

	Store SAML Token: allows one to keep SAML token (assertion)
inside user session. Don’t enable it unless you need to replay this
token on an application.

	Attribute containing user identifier: set the value of SAML
attribute (“Name”) that should be used as user main identifier
($user). If empty, the NameID content is used.

Signature

These options override service signature options (see
SAML service configuration).

	Signature method: signature method for requests sent to this provider

	Sign SSO message: sign SSO message

	Check SSO message signature: check SSO message signature

	Sign SLO message: sign SLO message

	Check SLO message signature: check SLO message signature

Binding

	SSO binding: force binding to use for SSO (http-redirect,
http-post, etc.)

	SLO binding: force binding to use for SLO (http-redirect,
http-post, etc.)

Note

If no binding defined, the default binding in IDP metadata will be
used.

Security

	Encryption mode: set the encryption mode for this IDP (None,
NameID or Assertion).

	Check time conditions: set to Off to disable time conditions
checking on authentication responses.

	Check audience conditions: set to Off to disable audience
conditions checking on authentication responses.

Display

Used only if you have more than 1 SAML Identity Provider declared

	Display name: Name of the IDP

	Logo: Logo of the IDP

	Order: Number to sort IDP display

Tip

The chosen logo must be in Portal icons directory
(portal/static/common/). You can set a custom icon by setting the
icon file name directly in the field and copy the logo file in portal
icons directory

Slave

	Authentication

	Users

	Password

	✔

	✔

	

Presentation

LL::NG Slave backend relies on HTTP headers to retrieve user login
and/or attributes.

	Authentication: will check user login in a header and create session
without prompting any credentials (but will register client IP and
creation date)

	Users: collect data transferred in HTTP headers by the “master”.

It allows one to put LL::NG::portal behind another web SSO, or behind a
SSL hardware to delegate SSL authentication to that hardware.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose Slave for authentication or users module.

Then, go in Slave parameters:

	Authentication level: authentication level for this module.

	Header for user login: header that contains the user main login

	Master’s IP address: the IP addresses of servers which are
accredited to authenticate user. This is a security point, to prevent
someone to create a session by sending custom headers. You can set
one or several IP addresses, spaces separated, or let this
parameter empty to disable the checking.

	Control header name: header that contains a value to control. Let
this parameter empty to disable the checking.

	Control header content: value to control. Let this parameter
empty to disable the checking.

	Display authentication logo: display Slave logo.

You have then to declare HTTP headers exported by the main SSO (in
Exported Variables). Example :

	Key (LL::NG name)

	Value (HTTP header name)

	uid

	Auth-User

	mail

	User-Email

Example

	Request with curl (AuthChoice with Slave and Secured cookie => double
cookies for a single session):

Control header name: control

Control header content: password

curl -k https://127.0.0.1:19876 -H 'CN: dwho' -H 'Host: auth.example.com' -H 'Accept: application/json' -H 'control: password' -d "lmAuth=2_Slave" | json_pp

	Response for good authentication:

{
 "result" : 1,
 "error" : 0,
 "id_http" : "5237ce20290d6110915a05d62f52618955b5f71b6dd3424481372ad419a5b122",
 "id" : "16fec9bd7a0523328568ca919ee0a6d6e329832f6c302bf36b106db92b5ec23d"
}

See also exported variables configuration.

SSL

	Authentication

	Users

	Password

	✔

	
	

Presentation

LL::NG uses Apache SSL
module [http://httpd.apache.org/docs/current/mod/mod_ssl.html], like
any other Apache authentication module, with extra
features:

	Choice of any certificate attribute as user main login

	Allow no certificate to chain with other authentication methods

Configuration (as the only authentication module)

By default, SSL is required before the portal is displayed (handled by
webserver). If you want to display a button to connect to LLNG
(compatible with Combination), you can
activate “SSL by Ajax request” in the manager.

With Apache

Enable SSL in Apache

You have to install mod_ssl for Apache.

For CentOS/RHEL:

yum install mod_ssl

Tip

In Debian/Ubuntu mod_ssl is already shipped in
apache*-common package.

Tip

For CentOS/RHEL, We advice to disable the default SSL virtual
host configured in /etc/httpd/conf.d/ssl.conf.

Apache SSL global configuration

You can then use this default SSL configuration, for example in the head
of /etc/lemonldap-ng/portal-apache2.conf:

SSLProtocol all -SSLv2
SSLCipherSuite HIGH:MEDIUM
SSLCertificateFile /etc/httpd/certs/ow2.cert
SSLCertificateKeyFile /etc/httpd/certs/ow2.key
SSLCACertificateFile /etc/httpd/certs/ow2-ca.cert

Note

Put your own files instead of ow2.cert, ow2.key,
ow2-ca.cert:

	SSLCertificateFile: Server certificate

	SSLCertificateKeyFile: Server private key

	SSLCACertificateFile: CA certificate to validate client
certificates

If you specify port in virtual host, then declare SSL port:

NameVirtualHost *:80
NameVirtualHost *:443

Apache portal SSL configuration

Edit the portal virtual host to enable SSL double authentication:

SSLEngine On
SSLVerifyClient optional
SSLVerifyDepth 10
SSLOptions +StdEnvVars
SSLUserName SSL_CLIENT_S_DN_CN

All SSL options are documented in Apache mod_ssl
page [http://httpd.apache.org/docs/current/mod/mod_ssl.html].

Here are the main options used by LL::NG:

	SSLVerifyClient: set to optional to allow user with a bad
certificate to access to LL::NG portal page. To switch to another
authentication backend, use the Multi module, for
example: Multi SSL;LDAP

	SSLOptions: set to +StdEnvVars to get certificate fields in
environment variables

	SSLUserName (optional): certificate field that will be used to
identify user in LL::NG portal virtual host

With Nginx

Enable SSL:

ssl on;
ssl_verify_client optional;
ssl_certificate /etc/letsencrypt/live/my/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/my/privkey.pem;
ssl_verify_depth 3;
All CA certificates concatenated in a single file
ssl_client_certificate /etc/nginx/ssl/ca.pem;
ssl_crl /etc/nginx/ssl/crl/my.crl;

Reset SSL connection. User does not have to close his browser to try connecting again
keepalive_timeout 0 0;
add_header 'Connection' 'close';
ssl_session_timeout 1s;

You must also export SSL_CLIENT_S_DN_CN in FastCGI params:

map directive must be set in http context
map $ssl_client_s_dn $ssl_client_s_dn_cn {
 default "";
 ~/CN=(?<CN>[^/]+) $CN; # prior Nginx 1.11.6
 #~,CN=(?<CN>[^,]+) $CN; # Nginx >= 1.11.6
 }
fastcgi_param SSL_CLIENT_S_DN_CN $ssl_client_s_dn_cn;

Nginx SSL Virtual Host example with uWSGI

server {
 listen 443;
 server_name authssl.example.com;
 root /usr/share/lemonldap-ng/portal/htdocs/;
 # Use "lm_app" format to get username in nginx.log (see nginx-lmlog.conf)
 access_log /var/log/nginx/access.log lm_app;

 ssl_verify_client on;
 ssl_verify_depth 3;

 # Full chain CRL is required
 # All CRLs must be concatenated in a single .pem format file
 ssl_crl /etc/nginx/ssl/crl/crls.pem;
 if ($uri !~ ^/((static|javascript|favicon).*|.*\.psgi)) {
 rewrite ^/(.*)$ /index.psgi/$1 break;
 }

 location ~ ^(?<sc>/.*\.psgi)(?:$|/) {
 # uWSGI Configuration
 include /etc/nginx/uwsgi_params;
 uwsgi_pass 127.0.0.1:5000;
 uwsgi_param LLTYPE psgi;
 uwsgi_param SCRIPT_FILENAME $document_root$sc;
 uwsgi_param SCRIPT_NAME $sc;
 uwsgi_param SSL_CLIENT_S_DN_CN $ssl_client_s_dn_cn;
 }

 #index index.psgi;
 location / {
 try_files $uri $uri/ =404;
 add_header Strict-Transport-Security "max-age=15768000";
 }
}

Attention

Nginx 1.11.6 change: format of the $ssl_client_s_dn and
$ssl_client_i_dn variables has been changed to follow RFC 2253 (RFC
4514); values in the old format are available in the
$ssl_client_s_dn_legacy and $ssl_client_i_dn_legacy variables.

Configuration of LemonLDAP::NG

In Manager, go in General Parameters > Authentication modules
and choose SSL for authentication.

Tip

You can then choose any other module for users and
password.

Then, go in SSL parameters:

	Authentication level: authentication level for this module

	Extracted certificate field: field of the certificate affected to
$user internal variable

Auto reloading SSL Certificates

A known problematic is that many browser (Firefox, Chrome) remembers the
fact that the certificate is not available at a certain time. It is
particularly important for smart cards: when the card is not inserted
before the browser starts, the user must restart his browser, or at
least refresh (F5) the page.

Apache server

It is possible with AJAX code and 3 Apache locations to bypass this
limitation.

	Modify the portal virtual host to match this example:

SSLEngine On
SSLCACertificateFile /etc/apache2/ssl/ca.crt
SSLCertificateKeyFile /etc/apache2/ssl/lemonldap.key
SSLCertificateFile /etc/apache2/ssl/lemonldap.crt

SSLVerifyDepth 10
SSLOptions +StdEnvVars
SSLUserName SSL_CLIENT_S_DN_CN

DocumentRoot
DocumentRoot /var/lib/lemonldap-ng/portal/
<Directory /var/lib/lemonldap-ng/portal/>
 Order Deny,Allow
 Allow from all
 Options +ExecCGI +FollowSymLinks
 SSLVerifyClient none
</Directory>

<Location /index>
 Order Deny,Allow
 Allow from all
 SSLVerifyClient none
</Location>

<Location /testssl>
 Order Deny,Allow
 Allow from all
 SSLVerifyClient require
</Location>

Alias /sslok /var/lib/lemonldap-ng/portal
<Location /sslok>
 Order Deny,Allow
 Allow from all
 SSLVerifyClient require
</Location>

	/index/ is an unprotected page to display a SSL test button

	/testssl/ is a SSL protected page to check the certificate

	/sslok/ is the new LemonLDAP::NG portal. You need to declare the new
url in the manager: Portal -> URL: https://auth.example.com/sslok/

2. Then you need to construct the Ajax page, for example in
/index/bouton.html. It looks like this:

<body>
<script src="./jquery-2.1.4.min.js" type="text/javascript"> </script>
<!--<script src="./jquery-ui-1.8-rass.js" type="text/javascript"> </script>-->

<script>
$('.enteteBouton').click(function (e) {
 var b=navigator.userAgent.toLowerCase();
 if(b.indexOf("msie")!==-1){
 document.execCommand("ClearAuthenticationCache")
 }
 e.preventDefault();
 $.ajax({
 url:"https://auth.example.com/testssl",
 beforeSend:function(){},
 type:"GET",
 dataType:"html",
 success:function(c,a){
 if (c !== "") {
 alert("Carte OK");
 window.location.href = "https://auth.example.com/sslok/";
 }
 else {
 alert('Carte KO');
 }
 },
 error:function (xhr, ajaxOptions, thrownError){
 if(xhr.status==404) {
 alert("Carte OK");
 window.location.href = "https://auth.example.com/sslok/";
 }
 else {
 alert('Carte KO');
 }
 },
 complete:function(c,a){}
 });
});
</script>
</body>

Nginx server

With Nginx, append those server context directives to force SSL
connexion reset:

keepalive_timeout 0 0;
add_header 'Connection' 'close';
ssl_session_timeout 1s;

Danger

It is incompatible with authentication combination because
of Apache parameter “SSLVerifyClient”, which must have the value
“require”. To enable SSL with Combination, use
“SSL by Ajax”

Configuration (for Combination/Choice)

If you enable this feature, you must configure 2 portal virtual hosts:

	the main (which corresponds to portal URL) with
SSLVerifyClient none

	the second with SSLVerifyClient require and a
Header set Allow-Control-Allow-Origin https://portal-main-url

then declare the second URL in SSL options in the Manager. That’s all !
Then you can chain it in a combination.

Note

With choice, the second URL should be also declared
in module URL parameter to redirect user to Portal menu.

Note

Ajax authentication request can be sent to an another URL than Portal
URL.

To avoid a persistent loop between Portal and a redirection URL (pdata
is not removed because domains mismatch), you have to set pdata cookie
domain by editing lemonldap-ng.ini in section [portal]:

[portal]
pdataDomain = example.com

To avoid a bad/expired token during session upgrading (Reauthentication)
if URLs are served by different load balancers, you can force Upgrade
tokens to be stored into Global Storage by editing lemonldap-ng.ini
in section [portal]:

[portal]
forceGlobalStorageUpgradeOTT = 1

Attention

Content Security Policy may prevent to
submit Ajax Request. To avoid security warning,

Go to :
General Parameters > Advanced Parameters > Security > Content security policy

and set :

Default value => ‘self’ “Ajax request URL”

Form destinations => ‘self’ “Ajax request URL”

Ajax destinations => ‘self’ “Ajax request URL”

Script source => ‘self’ “Ajax request URL”

Extracting the username attribute

The “Extracted certificate field” must be set to the Apache/Nginx
environment variable containing the username attribute.

See the mod_ssl
documentation [https://httpd.apache.org/docs/current/en/mod/mod_ssl.html]
for a list of supported variables names.

If your webserver configuration allows multiple CAs, you may configure a
different environment variable for each CA.

In the “Conditional extracted certificate field”, add a line for each
CA.

	key: the CA subject DN (will be printed in debug logs)

	value: the variable containing the username when using certificates
emitted by this CA

Twitter

	Authentication

	Users

	Password

	✔

	
	

Presentation

Twitter [https://twitter.com] is a famous microblogging server.
Twitter use OAuth [http://en.wikipedia.org/wiki/OAuth] protocol to
allow applications to reuse its own authentication process (it means, if
your are connected to Twitter, other applications can trust Twitter and
let you in).

You need Net::Twitter [http://search.cpan.org/~mmims/Net-Twitter/]
package, with a very recent version (>3).

You need to register a new application on Twitter to get API key and API
secret. See Twitter FAQ [http://dev.twitter.com/pages/api_faq] on
how to do that:.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose Twitter for authentication module.

Tip

You can then choose any other module for users and
password.

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Then, go in Twitter parameters:

	Authentication level: authentication level for this module.

	API key: API key from Twitter

	API secret: API secret from Twitter

	Application name (optional): Application name (visible in
Twitter)

	User field: Twitter field that will be used as default user
identifier. Allowed values:

	screen_name

	user_id

WebID

	Authentication

	Users

	Password

	✔

	✔

	

Presentation

WebID [http://www.w3.org/wiki/WebID] is a way to uniquely identify a
person, company, organisation, or other agent using a URI and a
certificate.

You need Web::ID [https://metacpan.org/release/Web-ID] package.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose WebID for authentication module. You can also use WebID as
user database.

Then, go in WebID parameters:

	Authentication level: authentication level for this module.

	WebID whitelist: list of space separated hosts granted to host
FOAF document. You can use ‘*’ character. Example :*.partner.com

If you use WebID as user database, declare values in exported
variables :

	use any key name you want. If you want to refuse access when a data
is missing, just add a “!” before the key name

	in the value field, set the field name. Take a look at
http://xmlns.com/foaf/spec/#sec-crossref. Example
:name => foaf:name

See also exported variables configuration.

Apache configuration

Portal host must be configured to use SSL and must ask for client
certificate. It is recommended to use optional_no_ca since WebID doesn’t
use certificate authorities :

<VirtualHost _default_:443>
ServerName auth.example.com
SSLEngine on
SSLCertificateFile ...
SSLCertificateKeyFile ...
SSLVerifyClient optional_no_ca
...
</VirtualHost>

Tests

To test this, you can build your own WebID certificate using one of :

	Web::ID::Certificate::Generator [https://metacpan.org/module/Web::ID::Certificate::Generator]

	my-profile.eu [https://my-profile.eu/]

	gen-webid-cert.sh [https://gist.github.com/njh/2432427]

Yubikey

Attention

This module has been replaced by
Yubikey Second Factor

Custom authentication modules

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

This artifact allows one to define its own modules (authentication, user
database, password or register database).

Tip

The developer documentation is available in Portal manpages.
See Auth.pod and UserDB.pod

Configuration

In Manager, go in General Parameters > Authentication modules
and choose ‘Custom module’.

Then, you just have to define class names of your custom modules in
“Custom module names”. Custom parameters can be set in “Additional
parameters”. Full path must be specify.

You can define your own customAuth module icon. Icon must be in
site/htdocs/static/common/modules/icon.png

Tip

::Auth::My::Dev.pm means Lemonldap::NG::Portal::Auth::My::Dev

Attention

Be careful. Don’ t use an already attributed name in
configuration.

These parameters are available in your plugins using
$self->conf->{customAddParams}->{<customName>}.

Read portal manpages to see how to write these plugins.

Backend choice by users

	Authentication

	Users

	Password

	✔

	✔

	✔

Presentation

By default, only the configured authentication backend is available for
users.

Contrary to multiple backend stacking, backend choice
will present all available authentication methods to users, who will
choose the one they want.

The choice will concern three backends:

	Authentication

	Users

	Password

The chosen backends will be registered in session:

	$_auth

	$_userDB

	$_passwordDB

Authentication choice will also be registered in session:

	$_authChoice

Configuration

In Manager, go in General Parameters > Authentication modules
and choose Choice for authentication.

Attention

When Choice is selected for authentication, values
for Users and Password modules are also forced to Choice.

Then, go in Choice Parameters:

	URL parameter: parameter name used to set choice value (default:
lmAuth)

	Allowed modules: click on New chain to add a choice.

	Choice used for password authentication: authentication module used by
AuthBasic handler and OAuth2.0 Password Grant

	FindUser plugin parameter: authentication module called by
Find user plugin (Find user plugin)

[image: image0]

Define here:

	Name: Text displayed on choice tab.

	Authentication module

	Users module

	Password module

	URL: optional, can be used to redirect on another URL (for
example https://authssl.example.com). This is mandatory if you want
to use an Apache authentication module, which is run by Apache before
showing the LemonLDAP::NG portal page.

	Condition: optional, can be used to evaluate an expression to
display the tab. For example, to display a tab only if redirected by
Handler from application test1.example.com, you can set this
condition:

$env->{urldc} =~ /test1\.example\.com/

Note

Federated authentication need pdata cookie.
SameSite cookie value must be set to “Lax” or “None”.
See SSO cookie parameters

Note

Authentication request to an another URL than Portal URL can lead
to a persistent loop between Portal and a redirection URL (pdata is not
removed because domains mismatch). To avoid this, you have to set pdata
cookie domain by editing lemonldap-ng.ini in section [portal]:

[portal]
pdataDomain = example.com

Tip

You can prefix the key name with a digit to order them. The
digit will not be shown on portal page. Underscore characters are also
replaced by spaces.

Tip

You can also override some LLNG parameters for each chain. See
Parameters list to have the key names to use

Combination of authentication schemes

	Authentication

	Users

	Password

	✔

	✔

	✔ (since 2.0.10)

Presentation

This backend allows one to chain authentication method, for example to
failback to LDAP authentication if Remote authentication failed…

Configuration

You have to use Combination as authentication module (users module
must be set to “Same”). Then go in Combination parameters to :

	declare the modules that will be used

	set the rule chain

Modules declaration

Each module that will be used in combination rule must be declared. You
must set:

	the name used in the rule (a uniq string)

	the type (LDAP, DBI,…)

	the scope:

	authentication and user DB

	authentication only

	user DB only

	overloaded parameters: you can redefine any LLNG string parameters.
For example, if you use 2 different LDAP, the first can use normal
configuration and for the second, overwritten parameter can redefine
ldapServer,…

Note

To overload parameters, you must select a module, add a parameter
and set its value. For example:

	Name

	Type

	Scope

	Parameters

	DB1

	DBI

	Auth only

	

	DB2

	DBI

	User DB only

	dbiAuthChain => “mysql:…”

Usually, you can’t declare two modules of the same type if they don’t
have the same parameters. For example, usually you can’t declare a MySQL
DBI and a PostgreSQL DBI, because there is no extra field for PostgreSQL
parameters. Now with Combination, you can declare some overloaded
parameters.

For example, if DBI is configured to use PostgreSQL but DB2 is a MySQL
DB, you can override the “dbiChain” parameter.

You can also override a complex key like ldapExportedVars, by setting a
JSON value:

{"cn" => "cn", "uid" => "sAMAccounName", "mail" => "mail"}

Attention

If your JSON is corrupted, LLNG will use it as string
and just report a warning in logs.

Rule chain

Combination allows:

	to chain schemes (example: [LDAP] and [DBI])

	to test different schemes (example: [LDAP] or [DBI])

	to mix schemes (example: [Kerberos,LDAP] or [LDAP,LDAP])

	to choose authentication scheme depending on some request values

Each scheme must be enclose in []. A comma separates auth and user
DB modules. If only one value is set, the same is used for both.

Boolean expression

Remember that schemes in rules are the names declared above.

	Example

	Explanation

	[myLDAP] or [myDBI]

	If myLDAP fails, use myDBI

	[mySSL, myLDAP] or [myLDAP, myLDAP]

	Try mySSL for auth and myLDAP for userDB. If fails, switch to myLDAP for both

	[myLDAP] or [myDBI1] or [myDBI2]

	Try myLDAP, then if it fails, myDBI1, then if it fails myDBI2

	[mySSL and myLDAP, myLDAP]

	Use mySSL and myLDAP to authentify, myLDAP to get user

Attention

Note that “or” can’t be used inside a scheme. If you
think to “[mySSL or myLDAP, myLDAP]”, you must write
[mySSL, myLDAP] or [myLDAP, myLDAP]

	Example

	Explanation

	[myDBI1] and [myDBI2] or [myLDAP]

	Try myDBI1 and myDBI2, if it fails, try myLDAP

	[myDBI1] and [myDBI2] or [myLDAP] and [myDBI2]

	Try myDBI1 and myDBI2, if it fails, try myLDAP and myDBI2

Attention

You can’t use brackets in a boolean expression and “and”
has precedence on “or”.

If you think to “([myLDAP] or [myDBI1]) and [myDBI2]”, you must write
[myLDAP] and [myDBI2] or [myDBI1] and [myDBI2]

Tests

Test can use only the $env variable. It contains the FastCGI
environment variables.

	Example

	Explanation

	if($env->{REMOTE_ADDR} =~ /^10\./) then [myLDAP] else [mySSL, myLDAP]

	If user doesn’t come from 10.0.0.0/8 network, use SSL as authentication module

	if($env->{REMOTE_ADDR} =~ /^10\./) then [myLDAP] else if($env->{REMOTE_ADDR} =~ /^192/) then [myDBI1] else [myDBI2]

	Chain tests

Attention

Note that brackets can’t be used except to enclose test.

If you wants to write if(...) then if..., you must write
if(not ...) then ... else if(...)...

Let’s be crazy

The following rule is valid:

if($env->{REMOTE_ADDR} =~ /^192\./) then [mySSL, myLDAP] or [myLDAP] else [myLDAP and myDBI, myLDAP]

Combine second factor

Imagine you want to authenticate users either by SSL or LDAP+U2F, you
can’t directly write this rule: this is done in 2 steps:

	use this combination rule: [SSL,LDAP] or [LDAP]

	enable U2F with this rule: $_auth eq "LDAP" or
$_authenticationLevel < 4 (and adapt U2F authentication level)

Now if you want to authenticate users either by LDAP or LDAP+U2F (to
have 2 different authentication level), 2 possibilities:

	configure 2 portals and overwrite U2F activation in the second

	Modify login template to propose the choice (add a “submit” button
that points to the second portal)

Display multiple forms

Combination module returns the form corresponding to the first
authentication scheme available for the current request. You can force
it to display the forms chosen using combinationForms in
lemonldap-ng.ini. Example:

[portal]
combinationForms = standardform, openidform

Password management

New in version 2.0.10.

Not all configurations of the Combination module allow password management.

If your combination looks like this

[Kerberos, LDAP] or [LDAP]

Then you can simply set LDAP as the password module, and password changes
and reset will work as expected.

If your combination looks like this

[LDAP1] or [LDAP2]

Then you can configure the Combination password module to automatically
send password changes to the LDAP server which was used during authentication.
This module also enables password reset.

Note

You can set the _cmbPasswordDB session variable to manually select which
backend will be called when changing the password. This is useful when using
SASL delegation

Limitations

	When using password reset with a combination of 2 or more LDAP servers, you
need to make sure that there is no duplication of email addresses between all
your servers. If an email exists in more than one server, the password will
be reset on the first LDAP server that contains this email address

	Combinations using the and boolean expression will not cause passwords to
be changed in both backends for now

	Forcing the user to reset their password on next login is not currently
supported by the combination module

Known problems

Federation protocols

SAML, OpenID-Connect,
CAS or old OpenID can’t be chained
with a “and” for authentication part. So “[SAML] and [LDAP]” isn’t
valid. This is because their authentication kinematic don’t use the same
steps.

	Bad expression

	Solution

	Explanation

	[SAML] and [LDAP]

	[SAML, SAML and LDAP]

	Authentication is done by SAML only but user must match an LDAP entry

	[SAML] and [LDAP] or [LDAP]

	[SAML, SAML and LDAP] or [LDAP]

	Authentication is done by SAML or LDAP but user must match an LDAP entry

Auth::Apache authentication

When using this module, LL::NG portal will be called only if Apache does
not return “401 Authentication required”, but this is not the Apache
behaviour: if the auth module fails, Apache returns 401. So it can be
used only with a “and” boolean expression.

Tip

The new Kerberos authentication module
solve this for Kerberos: you just have to use it instead of Apache and
enable authentication by Ajax in Kerberos parameters.

Example: [Apache and LDAP, LDAP]

To bypass this, follow the documentation of
AuthApache module

SSL authentication

To chain SSL, you have to set “SSLRequire optional” in Apache
configuration, else users will be authenticated by SSL only.

Migrating from Multi

Old Multiple backends stack
implemented only `if` and `or` keywords. Examples:

	Multi expressions

	Combination

	LDAP;DBI

	[myLDAP] or [myDBI]

	DBI $ENV{REMOTE_ADDR}=~/^192/;LDAP $ENV{REMOTE_ADDR}!~/^192/

	if $env->{REMOTE_ADDR} then [myDBI] else [myLDAP]

Multiple backends stack

Attention

This module has been removed and replaced by the more
powerful Combination of auth schemes.

OpenID

	Authentication

	Users

	Password

	✔

	✔

	

Danger

OpenID protocol is deprecated. You should now use
OpenID Connect.

Presentation

LL::NG can delegate authentication to an OpenID server. This requires
Perl OpenID consumer
module [http://search.cpan.org/~mart/Net-OpenID-Consumer/] with at
least version 1.0.

Tip

LL::NG can also act as OpenID server, that
allows one to interconnect two LL::NG systems.

LL::NG will then display a form with an OpenID input, wher users will
type their OpenID login.

Tip

OpenID authentication can proposed as an alternate
authentication scheme using the authentication choice
method.

LL::NG can use a white list or a black list to filter allowed OpenID
domains.

If OpenID is used as users database, attributes will be requested to the
server with SREG extension.

Configuration

In Manager, go in General Parameters > Authentication modules
and choose OpenID for authentication and/or users.

Then, go in OpenID parameters:

	Authentication level: authentication level for this module.

	Secret token: used to check integrity of OpenID response.

	Authorizated domain:

	List type: choose white list to define allowed domains or
black list to define forbidden domains

	List: domains list (comma separated values)

To configure requested attributes, edit Exported variables and
define attributes:

	Key: internal session key, can be prefixed by ! to make the
attribute required

	Value: SREG attribute name:

	fullname

	nickname

	language

	postcode

	timezone

	country

	gender

	email

	dob

See also exported variables configuration.

Attention

Browser implementations of formAction directive are
inconsistent (e.g. Firefox doesn’t block the redirects whereas Chrome
does). Administrators may have to modify formAction value with wildcard
likes *.

In Manager, go in :

General Parameters > Advanced Parameters > Security >
Content Security Policy > Form destination

Remote

	Authentication

	Users

	Password

	✔

	✔

	

Danger

This module is a LL::NG specific identity federation
protocol. You may rather use standards protocols like
SAML, OpenID Connect or
CAS.

Presentation

	The main portal is configured to use CDA. The secondary portal is
declared in the Manager of the main LL::NG structure (else user will
be rejected).

	The portal of the secondary LL::NG structure is configured to
delegate authentication to a remote portal. A request to the main
session database is done (through
SOAP session backend) to be sure that the
session exists.

	If exportedAttr is set, only those attributes are copied in the
session database of the secondary LL::NG structure. Else, all data
are copied in the session database.

[image: image0]

	User tries to access to an application in the secondary LL::NG
structure without having a session in this area

	Redirection to the portal of the secondary area (transparent)

	Redirection to the portal of the main area and normal authentication
(if not done before)

	Redirection to the portal of the secondary area (transparent)

	Secondary portal check if remote session is available. It can be done
via direct access to the session database or using SOAP access. Then
it creates the session (with attribute filter)

	User can now access to the protected application

Note

Note that if the user is already authenticated on the first
portal, all redirections are transparent.

Configuration

Main LL::NG structure

Go in Manager, and:

	activate CDA in General Parameters » Cookies »
Multiple domains

	declare secondary portal in General Parameters »
Advanced Parameters » Security » Trusted domains

Secondary LL::NG structure

Configure the portal to use the remote LL::NG structure.

In Manager, go in General Parameters » Authentication modules
and choose Remote for authentication and users.

Then, go in Remote parameters:

	Portal URL: remote portal URL

	Cookie name (optional): name of the cookie of primary portal, if
different from secondary portal

	Sessions module: set
Lemonldap::NG::Common::Apache::Session::SOAP for
SOAP session backend.

	Sessions module options:

	proxy: SOAP sessions end point (see
SOAP session backend documentation)

Example: interoperability between 2 organizations

Using this, we can do a very simple interoperability system between 2
organizations using two LL::NG structures:

	each area has 2 portals:

	One standard portal

	One remote portal that delegates authentication to the second
organization (just another file on the same server)

	The normal portal has a link included in the authentication form
pointing to the remote portal for the users of the other organization

So on each main portal, internal users can access normally, and users
issued from the other organization have just to click on the link:

[image: image1]

	One user tries to access to the portal

	External user clicks to be redirected to the remote type portal

	After redirection, normal authentication in the remote portal

	Redirection to the remote type portal

	Validation of the session: external user has now a local session

U2F-or-TOTP 2nd Factor Authentication

This module enables both U2F and TOTP
Authentication (like Gitlab). Therefore, users can use their TOTP
instead if they don’t have their U2F device.

Difference between enabled both U2F and TOTP is that only one page is
displayed instead of displaying first a choice menu.

Configuration

In the manager (second factors), you just have to enable it:

	Activation: set it to “on”. Note that you should not enable
U2F and TOTP separately (except for
self-registration: see below)

	Authentication level: you can overwrite here auth level for
registered users. Leave it blank keeps auth level provided by first
authentication module (By default: 2 for user/password based
modules). It is recommended to set an higher value here if you want
to give access to apps just for enrolled users.

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Tip

Every other parameters of U2F and
TOTP can be set in the corresponding 2F modules except
that you should not enable them.

Attention

If you want to give a different level for U2F or TOTP,
leave this parameter blank and set U2F and TOTP “authentication level”
in corresponding modules.

Self-registration

This module has no self-registration. You have to use U2F and TOTP self
registration modules. Example: suppose you want to allow U2F
registration only if a TOTP secret is registered:

	TOTP self-registration => enabled

	U2F self-registration => $_2fDevices =~ /"type":\s*"TOTP"/s

Automatically, U2F registration will be hidden for unregistered TOTP
users and displayed then.

Universal 2nd Factor Authentication (U2F)

Universal 2nd
Factor [https://en.wikipedia.org/wiki/Universal_2nd_Factor] (U2F) is
an open authentication standard that strengthens and simplifies
two-factor authentication using specialized USB or NFC devices.

LLNG can propose to users to register their keys. When done, 2F
registered users can not login without using their key.

Tip

Note that it’s a second factor, not an authentication module.
Users are authenticated by both login form and U2F form.

Prerequisites and dependencies

This feature uses
Crypt::U2F::Server::Simple [https://metacpan.org/pod/Crypt::U2F::Server::Simple].

It is available as package on Debian:

apt install libcrypt-u2f-server-perl

For other systems, use CPAN. Before compiling it, you must install
Yubico’s C library headers.

Attention

An HTTPS portal is required to use U2F

Configuration

In the manager (second factors), you just have to enable it:

	Activation: set it to “on”

	Self registration: set it to “on” if users are authorized to
register their keys

	Authentication level: you can overwrite here auth level for U2F
registered users. Leave it blank keeps auth level provided by first
authentication module (default: 2 for user/password based modules).
It is recommended to set an higher value here if you want to give
access to some apps only for enrolled users

	Allow users to remove U2F key: If enabled, users can unregister
enrolled U2F device.

	Lifetime: Unlimited by default. Set a Time To Live in seconds.
TTL is checked at each login process if set. If TTL is expired,
relative 2F device is removed.

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Attention

If you want to use a custom rule for “activation” and
enable self-registration, you have to include this in your rule:
$_2fDevices =~ /"type":\s*"U2F"/s, else U2F will be required even if
users are not registered. This is automatically done when “activation”
is set to “on”.

Browser compatibility

	Chrome/Chromium ≥ 38

	Firefox :

	38 to 56 with U2F Support
Add-on [https://addons.mozilla.org/fr/firefox/addon/u2f-support-add-on/]

	57 to 59, with “security.webauth.u2f” set to “true” in
about:config (see Yubico
explanations [https://www.yubico.com/2017/11/how-to-navigate-fido-u2f-in-firefox-quantum/])

	probably enabled by default for versions ≥ 60

	Opera ≥ 40

Enrollment

If you have enabled self registration, users can register their U2F keys
using https://portal/2fregisters

Assistance

If a user loses its key, you can delete it from the manager Second
Factor module. To enable manager Second Factor Administration Module,
set enabledModules key in your lemonldap-ng.ini file :

[portal]
enabledModules = conf, sessions, notifications, 2ndFA

Developer corner

If you have another U2F registration interface, you have to set these
keys in Second Factor Devices array (JSON) in your user-database. Then
map it to the _2fDevices attribute (see
exported variables):

$_2fDevices = [{"name" : "MyU2FKey" , "type" : "U2F" , "_userKey" : "########" , "_keyHandle":"########" , "epoch":"1524078936"}, ...]

Attention

_userKey must be base64 encoded

Note that both “origin” and “appId” are fixed to portal URL.

TOTP 2nd Factor Authentication

Time based One Time
Password [https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm]
(TOTP) is an algorithm that computes a one-time password from a shared
secret key and the current time. This is currently use by Google
Authenticator [https://en.wikipedia.org/wiki/Google_Authenticator] or
FreeOTP [https://freeotp.github.io/].

LLNG can propose users to register this kind of software to increase
authentication level.

Tip

Note that it’s a second factor, not an authentication module.
Users are authenticated both by login form and TOTP.

Prerequisites and dependencies

This feature uses libconvert-base32-perl. Before enable it, on Debian
you must install libconvert-base32-perl by :

apt update
apt install libconvert-base32-perl
apt install libdigest-hmac-perl

Or from CPAN repository :

cpanm Convert::Base32

Configuration

In the manager (advanced parameters), you just have to enable it:

	Activation: set it to “on”

	Self registration: set it to “on” if users are authorized to
generate themselves a TOTP secret

	Authentication level: you can overwrite here auth level for TOTP
registered users. Leave it blank keeps auth level provided by first
authentication module (default: 2 for user/password based modules).
It is recommended to set an higher value here if you want to give
access to some apps only to users enrolled

	Issuer: default to portal hostname

	Interval: interval for TOTP algorithm (default: 30)

	Range: number of additional intervals to test (default: 1)

	Digits: number of digit by codes (default: 6)

	Display existing secret: display an already registered secret
(default: disabled)

	Change existing secret: authorize a user to change its previoulsy
registered TOTP secret

	Allow users to remove TOTP: If enabled, users can unregister
TOTP.

	Lifetime: Unlimited by default. Set a Time To Live in seconds.
TTL is checked at each login process if set. If TTL is expired,
relative TOTP is removed.

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Attention

If you want to use a custom rule for “activation” and
want to keep self-registration, you must include this in your rule that
$_2fDevices =~ /"type":\s*"TOTP"/s is set, else TOTP will be
required even if users are not registered. This is automatically done
when “activation” is simply set to “on”.

Danger

Range is tested backward and forward to prevent
positive or negative clock drift.

Enrollment

If you’ve enabled self registration, users can register their keys by
using https://portal/2fregisters

Assistance

If a user loses its key, you can remove it from manager Second Factor
module.// // To enable manager Second Factor Administration Module, set
enabledModules key in your lemonldap-ng.ini file :// //

[portal]
enabledModules = conf, sessions, notifications, 2ndFA

Developer corner

If you have another TOTP registration interface, you have to set these
keys in Second Factor Devices array (JSON) in your user-database. Then
map it to the _2fDevices attribute (see
exported variables):

[{"name" : "MyTOTP" , "type" : "TOTP" , "_secret" : "########" , "epoch":"1524078936"}, ...]

E-Mail as Second Factor

This plugin adds the user’s e-mail account as a second authentication
factor.

After logging in through another authentication module, a one-time code
will be generated by the portal and sent to the user’s e-mail address.
The user will be prompted for this code in order to finish the login
process.

Attention

This plugin will only improve security in situations
where the user’s email is not protected by the same password used to
login on LemonLDAP::NG. And of course, if the user’s email account is
also protected by LemonLDAP::NG, they will not be able to open their
mailbox to find out their one-time code.

Configuration

Before configuring this module, make sure the user’s email address is
correctly fetched from your UserDB plugin and appears in the session
browser. If you want to store the user e-mail in a different session
field than mail, go to “General Parameters » Advanced parameters »
SMTP” and set the “Session key containing mail address” parameter.

All parameters are configured in “General Parameters » Second factors »
Mail second factor”.

	Activation: Set to On to activate this module. If a user does
not have an email address, they will encounter an error on login. If
you want to use this plugin only for users who have an email address,
use $mail (or whatever your e-mail session key is) as the
activation rule.

	Code regex: The regular expression used to generate one-time
codes. The default is a 6-digit code.

	Code timeout: It might take a while for users to open their
e-mail account and find the code. Raise this timeout if the default
(2 minutes) isn’t enough.

	Mail subject: The subject of the email the user will receive. If
you leave it blank, it will be looked up in translation files.

	Mail body: The plain text content of the email the user will
receive. If you leave it blank, the mail_2fcode HTML template
will be used. The one-time code is stored in the $code variable

	Authentication level (Optional): if you want to overwrite the
value sent by your authentication module, you can define here the new
authentication level. Example: 5

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

External Second Factor

This basic plugin can be used to add a second factor authentication
device (SMS, OTP,…). It uses external commands to send or validate a
second factor. Any language is allowed to call your 2nd factor system.

Commands

Commands receive arguments on command line and must return a 0 code if
succeed, another else. Nothing must be written to STDOUT, STDERR is
reported in logs (but may be lost with FastCGI server).

Configuration

All parameters are configured in “General Parameters » Portal Parameters
» Extensions » External 2nd Factor”.

	Activation

	Code RegEx: regular expression to create an OTP code. Let this
option blank to delegate code Generation / Verification to an
external provider

	Send command: define your command using $attribute like in
rules. Example: /usr/local/bin/sendOtp --uid $uid or
/usr/local/bin/sendCode --uid $uid --code $code if code is
generated by the Portal

	Validation command: Required ONLY if you delegate code Generation
/ Verification to an external provider. You must also use $code
which is the value entered by user; Example:
/usr/local/bin/verify --uid $uid --code $code

	Authentication level (Optional): if you want to overwrite the
value sent by your authentication module, you can define here the new
authentication level. Example: 5

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Attention

The command line is split in an array and launched with
exec(). So you don’t need to enclose arguments in quotes to protect your
system against shell injection. However, you can not use any space except
to separate arguments.

SELinux note

If your server is enforcing SELinux policies, make sure your external
script has a label that is allowed to be executed by httpd.

For example, storing your script in /usr/local/bin/ will give it a
bin_t label that will work correctly.

If your script has a httpd_sys_script_exec_t type, it will only be
able to do external network requests if the SELinux boolean
httpd_can_network_connect is enabled.

If your script has any other label, it will probably not work at all.

Radius as Second Factor

Some proprietary, OTP-based second factor implementations expose a
Radius server that allow an authenticating application (such as
LemonLDAP::NG) to verify the validity of an OTP using the standard
Radius protocol.

Tip

This page is about using Radius to connect to an external 2FA
system for the second factor only. If your 2FA system works by
concatenating the user’s password and their OTP (LinOTP), you should
probably be using regular Radius authentication
instead

After choosing the Radius second factor type, the user is prompted with
a code that will be checked against the Radius server.

Prerequisites and dependencies

This feature uses Authen::Radius. Before enable it, on Debian you
must install it :

For CentOS/RHEL:

yum install perl-Authen-Radius

In Debian/Ubuntu, install the library through apt-get command

apt-get install libauthen-radius-perl

Configuration

Configuration

All parameters are configured in “General Parameters » Second factors »
Mail second factor”.

	Activation: Set to On to activate this module, or use a
specific rule to select which users may use this type of second
factor

	Server hostname: The hostname of the Radius server

	Shared secret: The secret key shared with the Radius server

	Session key containing login (Optional): When verifying the OTP
code against the Radius server, use this attribute as the login and
the OTP code as password. By default, the attribute designated as
whatToTrace is used.

	Authentication timeout (Optional) :

	Authentication level (Optional): if you want to overwrite the
value sent by your authentication module, you can define here the new
authentication level. Example: 5

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Vendor specific

Some configuration examples for specific vendors:

	InWebo Second Factor

InWebo Second Factor

InWebo [https://www.inwebo.com/] is a proprietary MFA solution.
You can use is as second factor through Radius 2FA module.

Configuration

On InWebo side :

	Create a connector of type Radius Push.

	Fill in the “IP Address” field with the IP of the public interface of your LL::NG server.

	Enter a secret, that you will also configure on LL::NG side.

See InWebo Radius documentation [https://inwebo.atlassian.net/wiki/spaces/DOCS/pages/2216886275/RADIUS+integration+and+redundancy] for more details.

On LL::NG side, go in “General Parameters » Second factors »
Radius second factor”.

	Activation: Set to On to activate this module, or use a
specific rule to select which users may use this type of second
factor

	Server hostname: The hostname of InWebo Radius server (for example radius2.myinwebo.com)

	Shared secret: The secret key declared on InWebo side

See Radius 2FA module for more details.

REST Second Factor

This plugin can be used to append a second factor authentication device
like SMS or OTP. It uses an external web service to submit and validate
the second factor.

Configuration

All parameters are set in “General Parameters » Portal Parameters »
Second Factors » REST 2nd Factor”.

	Activation

	Init URL (optional): REST URL to initialize dialog (send
OTP). Leave it blank if your API doesn’t need any initialization

	Init arguments: list of arguments to send (see below)

	Verify URL (required): REST URL to verify code

	Verify arguments: list of arguments to send (see below)

	Authentication level (Optional): if you want to overwrite the
value sent by your authentication module, you can define here the new
authentication level. Example: 5

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Arguments

Arguments are a list of key/value. Key is the name of JSON entry, value
is attribute or macro name.

Attention

For Verify URL, you should send $code at least

REST Dialog

REST web services have just to reply with a “result” key in a JSON file.
Auth/UserDB can add an “info” array. It will be stored in session data
(without reading “Exported variables”).

	URL

	Query

	Response

	Init URL

	JSON file: {"user":$user,...}

	JSON file: {"result":true/false}

	Verify URL

	JSON file: {"user":$user,"code":"$code",...}

	JSON file: {"result":true/false}

Yubikey Second Factor

A Yubikey [http://www.yubico.com/yubikey] is a small material token
manufactured by Yubico [http://www.yubico.com]. It sends an OTP,
which is validated via Yubico server.

Prerequisites and dependencies

You must install
Auth::Yubikey_WebClient [http://search.cpan.org/~massyn/Auth-Yubikey_WebClient/]
package.

You have to retrieve a client ID and a secret key from Yubico. See
Yubico API [https://upgrade.yubico.com/getapikey/] page.

Configuration

In the manager (second factors), you just have to enable it:

	Activation: set it to “on”

	Self registration: set it to “on” if users are authorized to
register their keys

	Authentication level: you can overwrite here auth level for
Yubikey registered users. Leave it blank keeps auth level provided by
first authentication module (default: 2 for user/password based
modules). It is recommended to set an higher value here if you
want to give access to some apps only to enrolled users

	Client ID: given by Yubico or another service

	API secret key: given by Yubico or another service

	Nonce (optional): if any

	URL: Url of service (leave blank to use Yubico cloud services)

	OTP public ID part size: leave it to default (12) unless you know
what you are doing

	Allow users to remove Yubikey: If enabled, users can unregister
Yubikey device.

	Get Yubikey ID from session attribute: If non-empty, the Yubikey ID will
be read from this session attribute. This allows external provisionning of Yubikeys.

	Lifetime: Unlimited by default. Set a Time To Live in seconds.
TTL is checked at each login process if set. If TTL is expired,
relative Yubikey is removed.

	Logo (Optional): logo file (in static/<skin> directory)

	Label (Optional): label that should be displayed to the user on
the choice screen

Attention

If you want to use a custom rule for “activation” and
want to keep self-registration, you must include this in your rule:
$_2fDevices =~ /"type":\s*"UBK"/s, else Yubikey will be required
even if users are not registered. This is automatically done when
“activation” is simply set to “on”.

Provisioning

If you don’t want to use self-registration, set public part of user’s
yubikey in Second Factor Devices array (JSON) in your user-database.
Then map it to the _2fDevices attribute (see
exported variables):

[{"name" : "MyYubikey" , "type" : "UBK" , "_secret" : "########" , "epoch":"1524078936"}, ...]

Enrollment

If you have enabled self registration, users can register their U2F keys
using https://portal/2fregisters

Additional Second Factors

Starting with version 2.0.6, LemonLDAP::NG lets you configure multiple
instances of second factor authentication modules, in a manner similar
to the Combination module.

Only the following Second Factor modules are compatible with this
feature:

	E-Mail

	External

	REST

Using this option, lets you give your users a wider range of possible
second factors. They could decide between using their work email or home
email. And as an administrator you may now plug in more than one Second
Factor solution through REST or
external commands.

Configuration

You can find the configuration for this feature in
General parameters » Second factors »
Additional second factors

	Name: the technical name of this second factor, it should be all
lowercase, and it is used as a sort key when second factors are
displayed to the user

	Type: what type of second factor you want to use

	Label: what title to display in the 2F choice screen

	Logo : URL path of a logo to display in the 2F choice screen

	Level: authentication level that will be set if this 2F is used

	Rule: If you leave this field empty, this second factor will
always be enabled. You may use a perl expression to decide when this
second factor is available.

	$homeMail : this second factor will only trigger if the
$homeMail session key exists

	defined $hGroups->{'admin'} : this second factor will only
trigger if the user is in the admin group

After adding your second factors, don’t forget to add overload
parameters to them. You usually should at least give them different
logos so that the user can tell the difference between two second
factors of the same type.

See the parameters list page for a full list of
parameters you may overload. Here are the most useful ones:

	
	E-Mail
	
	mail2fLogo

	mailSessionKey

	mail2fCodeRegex

	mail2fSubject

	mail2fBody

	
	External
	
	ext2fLogo

	ext2fCodeActivation

	ext2FSendCommand

	ext2FValidateCommand

	
	REST
	
	rest2fLogo

	rest2fVerifyUrl

	rest2fVerifyArgs (must be a JSON object)

	rest2fInitUrl

	rest2fInitArgs (must be a JSON object)

Identity provider

	CAS server

	SAML Identity Provider

	OpenID server

	OpenID Connect Provider

	Get parameters Provider

CAS server

Presentation

LL::NG can be used as a CAS server. It can allow one to federate LL::NG
with:

	Another CAS authentication LL::NG provider

	Any CAS consumer

LL::NG is compatible with the CAS
protocol [https://jasig.github.io/cas/development/protocol/CAS-Protocol-Specification.html]
versions 1.0, 2.0 and part of 3.0 (attributes exchange).

Configuration

Enabling CAS

In the Manager, go in General Parameters » Issuer modules »
CAS and configure:

	Activation: set to On.

	Path: it is recommended to keep the default value (^/cas/)

	Use rule: a rule to allow user to use this module, set to 1
to always allow.

Tip

For example, to allow only users with a strong authentication
level:

$authenticationLevel > 2

Configuring the CAS Service

Then go in CAS Service to define:

	CAS login: the session key transmitted to CAS client as the main
identifier (CAS Principal). This setting can be overriden
per-application.

	Access control policy: define if access control should be done on
CAS service. Three options:

	none: no access control. The CAS service will accept
non-declared CAS applications and ignore access control rules.
This is the default.

	error: if user has no access, an error is shown on the portal,
the user is not redirected to CAS service

	faketicket: if the user has no access, a fake ticket is built,
and the user is redirected to CAS service. Then CAS service has to
show a correct error when service ticket validation will fail.

	CAS session module name and options: choose a specific module if
you do not want to mix CAS sessions and normal sessions (see
why).

	CAS attributes: list of attributes that will be transmitted by
default in the validate response. Keys are the name of attribute in
the CAS response, values are the name of session key.

	Use strict URL matching: (since 2.0.12) enforces a stricter URL
matching. By default, LemonLDAP::NG will try to find a declared CAS
Application matching the hostname of the requested application if it cannot
find a match using the full path. See URL Matching for details

Tip

If CAS login is not set, it uses General Parameters »
Logs » REMOTE_USER data, which is set to uid by
default

Configuring CAS Applications

If an access control policy other than none is specified,
applications that want to authenticate users through the CAS protocol
have to be declared before LemonLDAP::NG accepts to issue service
tickets for them.

Go to CAS Applications and then Add CAS Application. Give a
technical name (no spaces, no special characters), like “app-example”.

You can then access the configuration of this application.

Exported Attributes

You may add a list of attributes that will be transmitted in the
validate response. Keys are the name of attribute in the CAS response,
values are the name of session key.

The attributes defined here will completely replace any attributes you
may have declared in the global CAS Service configuration. In order
to re-use the global configuration, simply set this section to an empty
list.

Options

	Service URL : the service (user-facing) URL of the CAS-enabled
application. See URL Matching

	User attribute : session field that will be used as main
identifier.

	Authentication Level : required authentication level to access this
application

	Rule : The access control rule to enforce on this application. If
left blank, access will be allowed for everyone.

Attention

If the access control policy is set to none, this
rule will be ignored

Macros

You can define here macros that will be only evaluated for this service,
and not registered in the session of the user.

URL Matching

Changed in version 2.0.10.

Before version 2.0.10, only the hostname was taken into account, which made it impossible to have two different CAS services behind the same hostname.

Since version 2.0.10, the entire service URL is compared to the Service URL defined in LemonLDAP::NG. The longest prefix wins.

For example, if you declared two applications in LemonLDAP::NG with the following service URLs:

	https://cas.example.com/applications/zone1

	https://cas.example.com/applications/

An application located at https://cas.example.com/applications/zone1/myapp will match the first CAS service definition

An application located at https://cas.example.com/undeclared/ will also be accepted in order to preserve the previous behavior of matching on hostnames only.

Changed in version 2.0.12: The Strict URL matching option now lets you decide if LemonLDAP::NG should
fall back to legacy host-based matching if it cannot find a declared service
matching an incoming service URL. In the previous example,
https://cas.example.com/undeclared/ will no longer match if strict URL
matching is enabled

SAML Identity Provider

Presentation

LL::NG can act as an SAML 2.0 Identity Provider, that can allow one to
federate LL::NG with:

	Another LL::NG system configured with
SAML authentication

	Any SAML Service Provider

Configuration

SAML Service

See SAML service configuration chapter.

IssuerDB

Go in General Parameters » Issuer modules » SAML and
configure:

	Activation: set to On.

	Path: keep ^/saml/ unless you have change SAML end points
suffix in SAML service configuration.

	Use rule: a rule to allow user to use this module, set to 1
to always allow.

Tip

For example, to allow only users with a strong authentication
level:

$authenticationLevel > 2

Register LemonLDAP::NG on partner Service Provider

After configuring SAML Service, you can export metadata to your partner
Service Provider.

They are available at the Metadata URL, by default:
http://auth.example.com/saml/metadata.

You can also use http://auth.example.com/saml/metadata/idp to have only
IDP related metadata.

In both cases, the entityID of the LemonLDAP::NG server is
http://auth.example.com/saml/metadata

Register partner Service Provider on LemonLDAP::NG

In the Manager, select node SAML service providers and click on
Add SAML SP.

The SP name is asked, enter it and click OK.

Now you have access to the SP parameters list.

Metadata

You must register SP metadata here. You can do it either by uploading
the file, or get it from SP metadata URL (this require a network link
between your server and the SP).

[image: image0]

Tip

You can also edit the metadata directly in the textarea

Exported attributes

[image: image1]

For each attribute, you can set:

	Variable name: name of the variable in LemonLDAP::NG session

	Attribute name: name of the SAML attribute that will be seen by applications

	Friendly Name: optional, friendly name of the SAML attribute seen by applications

	Mandatory: if set to “On”, then this attribute is required to
build the SAML response, an error will displayed if there is no value
for it. Optional attribute will be sent only if there is a value
associated. Else it just will be sent through an attribute response,
if explicitly requested in an attribute request.

	Format: optional, SAML attribute format.

Options

Authentication response

	Default NameID format: if no NameID format is requested, or the
NameID format undefined, this NameID format will be used. If no
value, the default NameID format is Email.

	Force NameID session key: if empty, the NameID mapping defined in
SAML service configuration will be used. You can
force here another session key that will be used as NameID content.

	One Time Use: set the OneTimeUse flag in authentication response
(<Condtions>).

	sessionNotOnOrAfter duration: Time in seconds, added to
authentication time, to define sessionNotOnOrAfter value in SAML
response (<AuthnStatement>):

<saml:AuthnStatement AuthnInstant="2014-07-21T11:47:08Z"
 SessionIndex="loVvqZX+Vja2dtgt/N+AymTmckGyITyVt+UJ6vUFSFkE78S8zg+aomXX7oZ9qX1UxOEHf6Q4DUstewSJh1uK1Q=="
 SessionNotOnOrAfter="2014-07-21T15:47:08Z">

	notOnOrAfter duration: Time in seconds, added to authentication
time, to define notOnOrAfter value in SAML response (<Condtions>
and <SubjectConfirmationData>):

<saml:SubjectConfirmationData NotOnOrAfter="2014-07-21T12:47:08Z"
 Recipient="http://simplesamlphp.example.com/simplesamlphp/module.php/saml/sp/saml2-acs.php/default-sp"
 InResponseTo="_3cfa896ab05730ac81f413e1e13cc42aa529eceea1"/>

<saml:Conditions NotBefore="2014-07-21T11:46:08Z"
 NotOnOrAfter="2014-07-21T12:48:08Z">

Attention

There is a time tolerance of 60 seconds in
<Conditions>

	Force UTF-8: Activate to force UTF-8 decoding of values in SAML
attributes. If set to 0, the value from the session is directly
copied into SAML attribute.

Signature

These options override service signature options (see
SAML service configuration).

	Signature method: the algorithm used to sign messages sent to this service

	Sign SSO message

	Check SSO message signature: “On” means that LemonLDAP::NG will verify
signatures if IDP and SP metadata require it. “Off” will disable signature
verification entirely.

	Sign SLO message

	Check SLO message signature

Security

	Encryption mode: set the encryption mode for this SP (None,
NameID or Assertion).

	Enable use of IDP initiated URL: set to On to enable IDP
Initiated URL on this SP.

	Authentication Level: required authentication level to access this SP

	Access Rule: lets you specify a Perl rule to restrict access to this SP

Extra variables

The following environment variables are available in SAML access rules and macros:

	$env->{llng_saml_sp} : entityID of the SAML service

	$env->{llng_saml_spconfkey} : configuration key of the SAML service

New in version 2.0.10.

	$env->{llng_saml_acs} : AssertionConsumerServiceURL, if specified in the AuthnRequest

IDP Initiated mode

The IDP Initiated URL is the SSO SAML URL with GET
parameters:

	IDPInitiated: 1

	One of:

	sp: Service Provider entity ID

	spConfKey: Service Provider configuration key

For example:
http://auth.example.com/saml/singleSignOn?IDPInitiated=1&spConfKey=simplesamlphp

	Optionally, if you may also specify, in addition to sp or spConfKey:

	spDest: URL of Service Provider’s AssertionConsumerService

The URL specified in spDest must be present in the Service Provider metadata registered in LemonLDAP::NG. This is only useful if your Service Provider is reachable over multiple URLs.

Macros

You can define here macros that will be only evaluated for this service,
and not registered in the session of the user.

Known issues

Using both Issuer::SAML and Auth::SAML on the same LLNG may have some
side-effects on single-logout.

OpenID server

Danger

OpenID protocol is deprecated, you should now use
OpenID Connect

Presentation

LL::NG can act as an OpenID 2.0 Server, that can allow one to federate
LL::NG with:

	Another LL::NG system configured with
OpenID authentication

	Any OpenID consumer

LL::NG is compatible with the OpenID Authentication protocol version
2.0 [http://openid.net/specs/openid-authentication-2_0.html] and
version
1.0 [http://openid.net/specs/openid-authentication-1_1.html]. It can
be used just to share authentication or to share user’s attributes
following the OpenID Simple Registration Extension 1.0
(SREG) [http://openid.net/specs/openid-simple-registration-extension-1_0.html]
specification.

When LL::NG is configured as OpenID identity provider, users can share
their authentication using [PORTAL]/openidserver/[login] where:

	[PORTAL] is the portal URL

	[login] is the user login (or any other session information,
see below)

Example:

http://auth.example.com/openidserver/foo.bar

Configuration

In the Manager, go in General Parameters » Issuer modules »
OpenID and configure:

	Activation: set to On

	Path: keep ^/openidserver/ unless you have change
Apache portal configuration file.

	Use rule: a rule to allow user to use this module, set to 1 to
always allow.

Tip

For example, to allow only users with a strong authentication
level:

$authenticationLevel > 2

Then go in Options to define:

	Secret token: a secret token used to secure transmissions between
OpenID client and server (see below).

	OpenID login: the session key used to match OpenID login.

	Authorized domains: white list or black list of OpenID client
domains (see below).

	SREG mapping: link between SREG attributes and session keys
(see below).

Tip

If OpenID login is not set, it uses General Parameters
» Logs » REMOTE_USER data, which is set to uid by
default

Shared attributes (SREG)

SREG [http://openid.net/specs/openid-simple-registration-extension-1_0.html]
permit the share of 8 attributes:

	Nick name

	Email

	Full name

	Date of birth

	Gender

	Postal code

	Country

	Language

	Timezone

Each SREG attribute will be associated to a user session key. A session
key can be associated to more than one SREG attribute.

Note

If the OpenID consumer ask for data, users will be prompted to
accept or not the data sharing.

Security

	LL::NG can be configured to restrict OpenID exchange using a white or
a black list of domains.

	If not set, the secret token is calculated using the general
encryption key.

Attention

Note that SAML protocol is more secured
than OpenID, so when your partners are known, prefer
SAML.

OpenID Connect Provider

Presentation

Note

OpenID Connect is a protocol based on REST, OAuth 2.0 and JOSE
stacks. It is described here: http://openid.net/connect/.

LL::NG can act as an OpenID Connect Provider (OP). It will answer to
OpenID Connect requests to give user identity (through ID Token) and
information (through User Info end point).

As an OP, LL::NG supports a lot of OpenID Connect features:

	Authorization Code, Implicit and Hybrid flows

	Publication of JSON metadata and JWKS data (Discovery)

	prompt, display, ui_locales, max_age parameters

	Extra claims definition

	Authentication context Class References (ACR)

	Nonce

	Dynamic registration

	Access Token Hash generation

	ID Token signature (HS256/HS384/HS512/RS256/RS384/RS512)

	UserInfo endpoint, as JSON or as JWT

	Request and Request URI

	Session management

	FrontChannel Logout

	BackChannel Logout

	PKCE (Since 2.0.4) - See RFC
7636 [https://tools.ietf.org/html/rfc7636]

	Introspection endpoint (Since 2.0.6) - See RFC
7662 [https://tools.ietf.org/html/rfc7662]

	Offline access (Since 2.0.7)

	Refresh Tokens (Since 2.0.7)

Configuration

OpenID Connect Service

See OpenID Connect service configuration
chapter.

IssuerDB

Go in General Parameters » Issuer modules » OpenID Connect
and configure:

	Activation: set to On.

	Path: keep ^/oauth2/ unless you need to use another path

	Use rule: a rule to allow user to use this module, set to 1
to always allow.

Tip

For example, to allow only users with a strong authentication
level:

$authenticationLevel > 2

Configuration of LL::NG in Relying Party

Each Relying Party has its own configuration way. LL::NG publish its
OpenID Connect metadata to ease the configuration of client.

The metadata can be found at the standard “Well Known” URL:
http://auth.example.com/.well-known/openid-configuration

An example of its content:

{
 "end_session_endpoint" : "http://auth.example.com/oauth2/logout",
 "jwks_uri" : "http://auth.example.com/oauth2/jwks",
 "token_endpoint_auth_methods_supported" : [
 "client_secret_post",
 "client_secret_basic"
],
 "token_endpoint" : "http://auth.example.com/oauth2/token",
 "response_types_supported" : [
 "code",
 "id_token",
 "id_token token",
 "code id_token",
 "code token",
 "code id_token token"
],
 "userinfo_signing_alg_values_supported" : [
 "none",
 "HS256",
 "HS384",
 "HS512",
 "RS256",
 "RS384",
 "RS512"
],
 "id_token_signing_alg_values_supported" : [
 "none",
 "HS256",
 "HS384",
 "HS512",
 "RS256",
 "RS384",
 "RS512"
],
 "userinfo_endpoint" : "http://auth.example.com/oauth2/userinfo",
 "request_uri_parameter_supported" : "true",
 "acr_values_supported" : [
 "loa-4",
 "loa-1",
 "loa-3",
 "loa-5",
 "loa-2"
],
 "request_parameter_supported" : "true",
 "subject_types_supported" : [
 "public"
],
 "issuer" : "http://auth.example.com/",
 "grant_types_supported" : [
 "authorization_code",
 "implicit",
 "hybrid"
],
 "authorization_endpoint" : "http://auth.example.com/oauth2/authorize",
 "check_session_iframe" : "http://auth.example.com/oauth2/checksession",
 "scopes_supported" : [
 "openid",
 "profile",
 "email",
 "address",
 "phone"
],
 "require_request_uri_registration" : "false",
 "registration_endpoint" : "http://auth.example.com/oauth2/register"
}

Configuration of Relying Party in LL::NG

Go in Manager and click on OpenID Connect Relying Parties, then
click on Add OpenID Relying Party. Give a technical label (no
spaces, no special characters), like “sample-rp”;

You can then access to the configuration of this RP.

Exported attributes

You can map here the attribute names from the LL::NG session to an
OpenID Connect
claim [http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims].

OpenID Connect claims

	Claim name

	Associated scope

	Type

	Example of corresponding LDAP attribute

	sub

	openid

	string

	uid

	name

	profile

	string

	cn

	given_name

	profile

	string

	givenName

	family_name

	profile

	string

	sn

	middle_name

	profile

	string

	

	nickname

	profile

	string

	

	preferred_username

	profile

	string

	displayName

	profile

	profile

	string

	labeledURI

	picture

	profile

	string

	

	website

	profile

	string

	

	email

	email

	string

	mail

	email_verified

	email

	boolean

	

	gender

	profile

	string

	

	birthdate

	profile

	string

	

	zoneinfo

	profile

	string

	

	locale

	profile

	string

	preferredLanguage

	phone_number

	phone

	string

	telephoneNumber

	phone_number_verified

	phone

	boolean

	

	updated_at

	profile

	string

	

	formatted

	address

	string

	registeredAddress

	street_address

	address

	string

	street

	locality

	address

	string

	l

	region

	address

	string

	st

	postal_code

	address

	string

	postalCode

	country

	address

	string

	co

For each OpenID Connect claim you want to release to applications, you can define:

	Claim name: the name of the claim as it will appear in Userinfo responses

	Variable name: the name of the LemonLDAP::NG session variable containing the claim value

	Type: the data type of the attribute. By default, a string. Choosing integer or boolean will make the claim appear as the corresponding JSON type.

	Array: choose how to process multi-valued attributes

	Auto: If the session key contains a single value, it will be released as a JSON number, string or boolean, depending on the previously specified type. If the session key contains multiple values, it will be released as an array of numbers, strings or booleans.

	Always: Return an array even if the attribute only contains one value

	Never: If the session key contains a single value, it will be released as a JSON number, string or boolean. If the session key contains multiple values, it will be released as a single string with a separator character.

Attention

The specific sub attribute is not defined here, but
in User attribute parameter (see below).

Extra Claims

Attention

By default, only claims that are part of standard OpenID
Connect scopes will be sent to a client. If you want to send a claim
that is not in the OpenID Connect specification, you need to declare it
in the Extra Claims section

If you want to make custom claims visible to OpenID Connect clients, you
need to declare them in a scope.

Add your additional scope as the Key, and a space-separated list of
claims as the Value:

	timelord => rebirth_count bloodline

In this example, an OpenID Client asking for the timelord scope will
be able to read the rebirth_count and bloodline claims from the
Userinfo endpoint.

Danger

Any Claim defined in this section must be mapped to a
LemonLDAP::NG session attribute in the Exported Attributes
section

Scope Rules

New in version 2.0.12.

[image: beta] This feature may change in a future version in a way that breaks
compatibility with existing configuration

By default, LemonLDAP::NG grants all scopes requested by the application, as
long as the user consents to them.

This configuration screen allows you to change that behavior by attaching
a rule to a particular scope.

	If the rule evaluates to true, the scope is added to the current request,
even if it was not requested by the application

	If the rule evaluates to false, the scope is removed from the current request

	Scopes which are not declared in the “Scope rules” list are left untouched

When writing scope rules, you can use the special $requested variable. This
variables evaluates to true within a scope rule when the corresponding scope
has been requested by the application. You can use this variable in a dynamic
rule when you only want to add a scope when the application requested it.

Examples:

	read: inGroup('readers')

	the read scope will be granted if the user is a member of the readers group even if the application did not request it.

	write: $requested and inGroup('writers')

	the write scope will be granted if the user is a member of the writers group, but only if the application requested it.

Options

	Basic

	Client ID: Client ID for this RP

	Client secret: Client secret for this RP (can be use for
symmetric signature)

	Public client (since version 2.0.4): set this RP as public
client, so authentication is not needed on token endpoint

	Redirection addresses: Space separated list of redirect
addresses allowed for this RP

	Advanced

	Bypass consent: Enable if you never want to display the scope
sharing consent screen (consent will be accepted by default).
Bypassing the consent is not compliant with OpenID Connect
standard.

	User attribute: session field that will be used as main
identifier (sub)

	Force claims to be returned in ID Token: This options will
make user attributes from the requested scope appear as ID Token
claims.

	Use JWT format for Access Token (since version 2.0.12): When
using this option, Access Tokens will use the JWT format, which means they
can be verified by external OAuth2.0 resource servers without using the
introspection or userinfo endpoint.

	Release claims in Access Token (since version 2.0.12): If Access
Tokens are in JWT format, this option lets you release the claims defined
in the Extra Claims section inside the Access Token itself.

	Additional audiences (since version 2.0.8): You can
specify a space-separate list of audiences that will be added the
audiences of the ID Token

	Use refresh tokens (since version 2.0.7): If this option
is set, LemonLDAP::NG will issue a Refresh Token that can be used
to obtain new access tokens as long as the user session is still
valid.

	Timeouts

	Authorization Code expiration: Expiration time of
authorization code, when using the Authorization Code flow. The
default value is one minute.

	ID Token expiration: Expiration time of ID Tokens. The default
value is one hour.

	Access token expiration (since version 2.0.12): Expiration time
of Access Tokens. The default value is one hour.

	Offline session expiration: This sets the lifetime of the
refresh token obtained with the offline_access scope. The
default value is one month. This parameter only applies if offline
sessions are enabled.

	Security

	ID Token signature algorithm: Select one of the available public key
(RSXXX) or HMAC (HSXXX) based signature algorithms

	Access Token signature algorithm: Select one of the available public
key signature algorithms

	Userinfo signature algorithm (since version 2.0.12): Select one
of the available signature algorithms to release user information as a JWT
on the /userinfo endpoint. If this option is left empty, user
information will be released as a plain JSON object. The None value
will release user information as an unsigned JWT.

	Require PKCE (since version 2.0.4): a code challenge is
required at token endpoint (see
RFC7636 [https://tools.ietf.org/html/rfc7636])

	Allow offline access (since version 2.0.7): After enabling
this feature, an application may request the offline_access
scope, and will obtain a Refresh Token that persists even after
the user has logged off. See
https://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess
for details. These offline sessions can be administered through
the Session Browser.

	Allow OAuth2.0 Password Grant (since version 2.0.8): Allow the use of the Resource Owner Password Credentials Grant by this client. This feature only works if you have configured a form-based authentication module.

	Allow OAuth2.0 Client Credentials Grant (since version 2.0.11): Allow the use of the Client Credentials Grant by this client.

	Authentication Level: required authentication level to access this application

	Access Rule: lets you specify a Perl rule to restrict access to this client

	Logout

	Allowed redirection addresses for logout: A space separated list of URLs that this client can redirect the user to once the logout is done (through post_logout_redirect_uri)

	URL: Specify the relying party’s logout URL

	Type: Type of Logout to perform (only Front-Channel is implemented for now)

	Session required: Whether to send the Session ID in the logout request

Resource Owner Password Credentials Grant

The Resource Owner Password Credentials Grant allows you to exchange a user’s login and password for an access token. This must be considered a legacy form of authentication, since the Authorization Code web-based flow is prefered for all applications that support it. It can however be useful in some scenarios involving technical accounts that cannot implement a web-based authentication flow.

Changed in version 2.0.12: when using the Choice authentication module, the Choice used for password authentication setting can be used to select which authentication choice is used by the Resource Owner Password Credentials Grant. Naturally, the selected choice must be a password-based authentication method (LDAP, DBI, REST, etc.)

See also

Specification for the Resource Owner Password Credentials Grant [https://tools.ietf.org/html/rfc6749#section-4.3]

Client Credentials Grant

The Client Credentials Grant allows you to obtain an Access Token using only a Relying Party’s Client ID and Client Secret.

The following attributes are made available in the created session:

	The _whatToTrace attribute (main session identifier), is set to the
relying party’s configuration key

	The _scope attribute is set to the requested scopes

	The _clientId attribute is set to the Client ID that obtained the access
token.

	The _clientConfKey attribute is set to the LemonLDAP::NG configuration
key for the client that obtained the access token.

The Access Rule, if defined, will have access to those variables, as well as
the @ENV array. You can use it to restrict the use of this grant to
pre-determined scopes, a particular IP address, etc.

These session attribute will be released on the UserInfo endpoint if they are
mapped to Exported Attributes and Extra Claims

See also

Specification for the Client Credentials Grant [https://tools.ietf.org/html/rfc6749#section-4.4]

Macros

You can define here macros that will be only evaluated for this service,
and not registered in the session of the user.

Display

	Display name: Name of the RP application

	Logo: Logo of the RP application

Get parameters Provider

Presentation

For application not managing other provider protocols (CAS, OpenID
Connect, SAML,…) it is possible to configure LL::NG as a provider of
GET parameters:

	An application can call LL::NG portal with a redirection url, such as
http://auth.example.com/get/login?url=base64(application_url)

	When computing redirection, LL::NG portal will transmit any GET
parameter you have configured for this application. (session id for
example)

Danger

Passing such sensitive information can be dangerous. Using
other well-known secured protocols is recommended.

There is also the possibility to trigger a logout action by passing the
return url , such as
http://auth.example.com/get/logout?url=base64(return_url)

Configuration

In the Manager, go in General Parameters » Issuer modules »
GET and configure:

	Activation: set to On.

	Path: keep ^/get/ unless you have change
Apache portal configuration file.

	Use rule: a rule to allow user to use this module, set to 1 to
always allow.

Tip

For example, to allow only users with a strong authentication
level:

$authenticationLevel > 2

Then go in Get parameters to define variables to transmit:

	Define a new virtual host

	Declare all get parameters you need. You have access to any
variable or macro (but no perl expression).

For example:

"test1.example.com" => {
 "id" => "_session_id",
}

Danger

In the previous example, _session_id is quite sensitive,
thus it is encouraged that the application revalidate _session_id using
getCookie() SOAP call to avoid some security problems

Tip

If host is not already registered in virtual hosts, you need
to declare it in
trusted domains to allow
redirection

Attacks and Protection

	Brute Force Protection plugin

	Safe jail

	Assignment test

Brute Force Protection plugin

This plugin prevents brute force attack. Plugin DISABLED by default.

After some failed login attempts, user must wait before trying to log in
again.

The aim of a brute force attack is to gain access to user accounts by
repeatedly trying to guess the password of an user. If disabled,
automated tools may submit thousands of password attempts in a matter of
seconds.

Attention

This plugin relies on the Login History, stored in users’ persistent sessions.
This means that the authentication and persistent session backends will be
accessed for every login attempt, even fraudulent ones. This plugin is not
meant to protect against denial of service attacks.

Configuration

To enable Brute Force Attack protection:

Go in Manager, General Parameters » Advanced Parameters »
Security » Brute-force attack protection » Activationand
set to On.

	Parameters:

	Activation: Enable/disable brute force attack protection

	Lock time: Waiting time before another login attempt

	Allowed failed login: Number of failed login attempts allowed before account is locked

	Incremental lock: Enable/disable incremental lock times

	Incremental lock times: List of comma separated lock time values in seconds

Incremental lock time enabled

You just have to activate it in the Manager :

Go in Manager, General Parameters » Advanced Parameters »
Security » Brute-force attack protection »
Incremental lock times and set to On. (DISABLED by default) or
in lemonldap-ng.ini [portal] section:

[portal]
bruteForceProtectionIncrementalTempo = 1

Lock time increases between each failed login attempt after allowed failed logins.

[portal]
bruteForceProtectionLockTimes = 5, 15, 60, 300, 600
bruteForceProtectionMaxLockTime = 900

Note

Max lock time value is used if a lock time is missing
(number of failed logins higher than listed lock time values).
Lock time values can not be higher than max lock time.

Incremental lock time disabled

After allowed failed login attempts, user must
wait the lock time before trying to log in again.
To modify delta (MaxAge) between current and last stored
failed login (300 seconds by default) edit lemonldap-ng.ini in [portal] section:

[portal]
bruteForceProtectionTempo = 30
bruteForceProtectionMaxAge = 300
bruteForceProtectionMaxFailed = 3

Attention

Number of failed login attempts history might be also higher than
number of incremental lock time value plus allowed failed login attempts.
Incremental lock time values list will be truncated if not.

Danger

Number of failed login attempts stored in history MUST
be higher than allowed failed logins for this plugin takes effect.
See History plugin

Safe jail

Presentation

LemonLDAP::NG uses Safe jail to evaluate all expressions:

	Access rules

	Headers

	Form replay parameters

	Macros

	Groups

	Conditions:

	Menu modules display

	Multi modules display

	IssuerDB use

	Session opening

More information about Safe on
CPAN [http://search.cpan.org/search?query=Safe&mode=module]

Disable Safe jail

Safe can be very annoying when using
extended functions or
custom functions. In this case, you might want
to disable it.

To do this, go into Manager > General Parameters > Advanced Parameters >
Security > Use Safe Jail and disable it.

Assignment test

Presentation

Perl comparaisons are done by using eq for strings or == for integers.
To avoid an unwanted assignment like $authLevel = 5 (BAD EXPRESSION!),
you can enable Avoid assignment in expressions option.

To do this, go into Manager > General Parameters > Advanced Parameters >
Security > Avoid assignment in expressions and enable it.

DISABLE by default.

Plugins

	Adaptative Authentication Level

	Auto Signin Addon

	Brute Force Protection plugin

	Cross Domain Authentication

	Check DevOps plugin

	Check state plugin

	Check user plugin

	CrowdSec

	Viewer module

	ContextSwitching plugin

	Decrypt value plugin

	Login History

	Force Authentication Addon

	Global logout plugin

	Grant Session

	Impersonation plugin

	Find user plugin

	Notifications system

	Status pages

	Public pages

	Refresh session plugin (API)

	Reset password by mail

	Certificate reset

	REST services

	SOAP services (deprecated)

	Stay connected plugin

Adaptative Authentication Level

Presentation

A user obtain an authentication level depending on which authentication
module was used, and eventually which second factor module.

This plugin allows to adapt this authentication level depending on
other conditions, like network, device, etc.

Sample use case: a strategic application is configured to require an
authentication level of 5. Users obtain level 2 with their login/password
and level 5 using a TOTP second factor. You can trust users form internal
network by incrementing their authentication level based on their IP address,
they would then not be forced to use 2FA to access the strategic application.

Tip

This use case works if you enable the Use 2FA for session upgrade option.

Configuration

This plugin is enabled when at least one rule is defind.

To configure rules, go in General Parameters > Plugins >
Adapative Authentication Level.

You can then create rules with these fields:

	Rule: The condition that will be evaluated. If this condition
does not return true, then the level is not changed.

	Value: How change the authentication level. First character is
+, - or =, the second part is the number to add, remove
or set.

Tip

By example, to add 3 to authentication level for users from 192.168.0.0/24 network:

	Rule: $env->{REMOTE_ADDR} =~ /^192\.168\./

	Value: +3

Auto Signin Addon

Auto-Signin plugin provides an easy way to bypass authentication process
based on rules. For example, a TV can be automatically authenticated by
its IP address.

Configuration

This add-on is automatically enabled if a rule is defined. A rule links
rule to an username. The only availble variable here is $env. Example:

	Key (username)

	Rule

	dwho

	‘’$env->{REMOTE_ADDR} eq ‘192.168.42.42’ ‘’

Attention

Username must be defined in users database.

Brute Force Protection plugin

This plugin prevents brute force attack. Plugin DISABLED by default.

After some failed login attempts, user must wait before trying to log in
again.

The aim of a brute force attack is to gain access to user accounts by
repeatedly trying to guess the password of an user. If disabled,
automated tools may submit thousands of password attempts in a matter of
seconds.

Attention

This plugin relies on the Login History, stored in users’ persistent sessions.
This means that the authentication and persistent session backends will be
accessed for every login attempt, even fraudulent ones. This plugin is not
meant to protect against denial of service attacks.

Configuration

To enable Brute Force Attack protection:

Go in Manager, General Parameters » Advanced Parameters »
Security » Brute-force attack protection » Activationand
set to On.

	Parameters:

	Activation: Enable/disable brute force attack protection

	Lock time: Waiting time before another login attempt

	Allowed failed login: Number of failed login attempts allowed before account is locked

	Incremental lock: Enable/disable incremental lock times

	Incremental lock times: List of comma separated lock time values in seconds

Incremental lock time enabled

You just have to activate it in the Manager :

Go in Manager, General Parameters » Advanced Parameters »
Security » Brute-force attack protection »
Incremental lock times and set to On. (DISABLED by default) or
in lemonldap-ng.ini [portal] section:

[portal]
bruteForceProtectionIncrementalTempo = 1

Lock time increases between each failed login attempt after allowed failed logins.

[portal]
bruteForceProtectionLockTimes = 5, 15, 60, 300, 600
bruteForceProtectionMaxLockTime = 900

Note

Max lock time value is used if a lock time is missing
(number of failed logins higher than listed lock time values).
Lock time values can not be higher than max lock time.

Incremental lock time disabled

After allowed failed login attempts, user must
wait the lock time before trying to log in again.
To modify delta (MaxAge) between current and last stored
failed login (300 seconds by default) edit lemonldap-ng.ini in [portal] section:

[portal]
bruteForceProtectionTempo = 30
bruteForceProtectionMaxAge = 300
bruteForceProtectionMaxFailed = 3

Attention

Number of failed login attempts history might be also higher than
number of incremental lock time value plus allowed failed login attempts.
Incremental lock time values list will be truncated if not.

Danger

Number of failed login attempts stored in history MUST
be higher than allowed failed logins for this plugin takes effect.
See History plugin

Cross Domain Authentication

Presentation

Cross Domain Authentication (CDA)

Configuration

Go in Manager, General Parameters » Cookies »
Multiple domains and set to On.

To use this feature only locally, edit lemonldap-ng.ini in section
[all]:

[all]
cda = 1

Attention

If your handler is being served by Nginx, you have to
uncomment the following lines in your nginx configuration file:

If CDA is used, uncomment this
auth_request_set $cookie_value $upstream_http_set_cookie;
add_header Set-Cookie $cookie_value;

Handlers

Choose “CDA” as type for each virtualHost concerned by CDA (ie not in
main domain).

Check DevOps plugin

This plugin can be used to check the DevOps file.

Configuration

Just enable it in the manager (section “plugins”).

	Parameters:

	Activation: Enable / Disable this plugin

	Download file: Allow users to download DevOps file from a remote server by
providing an URL (By example: http://myapp.example.com:8080). Plugin will
try to retrieve remote file by sending a request (i.e.
http://myapp.example.com:8080/rules.json)

Usage

When enabled, /checkdevops URL path is handled by this plugin.
Then, you can paste a file to test your rules and headers.

Example

DevOps handler requires a rules.json file to define
access rules and headers:

{
 "rules": {
 "^/admin": "$uid eq 'admin'",
 "default": "accept"
 },
 "headers": {
 "Auth-User": "$uid"
 }
}

Note

This plugin displays ALL user session attributes except
the hidden ones.

You have to restrict access to specific users like DevOps teams
by setting an access rule like other VirtualHosts.

By example: $groups =~ /\bdevops\b/

Attention

Be careful to not display secret attributes.

checkDevOps plugin uses hidden attributes option.

Check state plugin

This plugin can be used to check if portal instance is ready. This can
be a health check to request keep-alive service to force a fail-over on
the backup-node.

Configuration

To enable Check state:
Go in Manager, General Parameters » Plugins » State Check.
You must also set a shared secret.

Usage

When enabled, /checkstate URL path is handled by this plugin.
GET parameters:

	GET Parameter

	Need

	Value

	secret

	required

	Same value as the shared secret given to the manager

	user

	optional

	If set (with password), a login/logout process will be tried

	password

	optional

	

Example

	Basic availability check:
https://auth.example.com/checkstate?secret=qwerty

	Try to log a user in:
https://auth.example.com/checkstate?secret=qwerty&user=dwho&password=dwho

Check user plugin

This plugin allows us to check session attributes, access rights and
transmitted headers for a specific user and URL. This can be useful for
IT Ops, dev teams or administrators to debug or check rules. Plugin
DISABLED by default.

Configuration

Just enable it in the manager (section “plugins”).

	Parameters:

	Activation: Enable / Disable this plugin

	Identities use rule: Rule to define which profiles can be
displayed (by example: !$anonymous)

	Unrestricted users rule: Rule to define which users can check
ALL users. Identities use rule is bypassed.

	Hidden attributes: Session attributes not displayed

	Attributes used for searching sessions: User’s attributes used
for searching sessions in backend if whatToTrace fails. Useful
to look for sessions by mail or givenName. Let it blank to search
by whatToTrace only

	Hidden headers: Sent headers whose value is masked except for unrestricted users.
Key is a Virtualhost name and value represents a space-separated headers list.
A blank value obfuscates ALL relative Virtualhost sent headers.
Note that just valued hearders are masked.

	Display:

	Computed sessions: Rule to define which users can display a
computed session if no SSO session is found

	Empty headers: Rule to define which users can display ALL headers
appended by LemonLDAP::NG including empty ones

	Normalized headers: Rule to define which users can see headers name sent by
the web server (see RFC3875)

	Empty values: Rule to define which users can display ALL attributes
even empty ones

	Persistent session data: Rule to define which users can display
persistent session data

Note

By example:

* test1.example.com => Auth-User mail
Just ‘Auth-User’ and ‘mail’ headers are masked if valued.

* test2.example.com => ‘’ ALL valued headers are masked.

Unrestricted users can see the masked headers.

Note

By example:

* Search attributes => mail uid givenName

If whatToTrace fails, sessions are searched by mail, next
uid if none session is found and so on…

* Display empty headers rule => $uid eq "dwho" -> Only ‘dwho’ will
see empty headers

Note

Keep in mind that Nginx HTTP proxy module gets rid of empty
headers. If the value of a header field is an empty string then this
field will not be passed to a proxied server. To avoid misunderstanding,
it might be useful to not display empty headers.

Attention

Be careful to not display secret attributes.

checkUser plugin hidden attributes are concatenation of
checkUserHiddenAttributes and hiddenAttributes. You just have to
append checkUser specific attributes.

Danger

This plugin displays ALL user session attributes except
the hidden ones.

You have to restrict access to specific users (administrators, DevOps,
power users and so on…) by setting an access rule like other
VirtualHosts.

By example: $groups =~ /\bsu\b/

To modify persistent sessions attributes (‘_loginHistory _2fDevices
notification_’ by default), edit lemonldap-ng.ini in [portal]
section:

[portal]
persistentSessionAttributes = _loginHistory _2fDevices notification_

Usage

When enabled, /checkuser URL path is handled by this plugin.

Attention

With federated authentication, checkUser plugin works
only if a session can be found in backend.

CrowdSec

Presentation

CrowdSec [https://crowdsec.net] is a free and open-source security
automation tool leveraging local IP behavior detection and a
community-powered IP reputation system.

LL::NG provides a CrowdSec bouncer that can reject Crowdsec banned-IP
requests or just provide an environment variable that can be used in
another plugin rule. For example, a second factor may be required if user’s
IP is CrowdSec-banned.

Configuration

To configure bouncer plugin, go in General Parameters > Plugins >
CrowdSec.

You can then configure:

	Activation: enable this plugin (default: disabled)

	Action: reject or warn and set $env->{CROWDSEC_REJECT} = 1

	Base URL of local API: base URL of CrowdSec local API
(default: http://localhost:8080)

	API key: API key, usually given by cscli bouncers add mylemon

Viewer module

This module can be useful to allow certain users to edit WebSSO
configuration in Read Only mode.

Configuration

Parameters are set in lemonldap-ng.ini file, section [manager]:

[manager]
enabledModules = conf, sessions, notifications, 2ndFA, viewer

defaultModule = viewer

viewerHiddenKeys = samlIDPMetaDataNodes samlSPMetaDataNodes managerPassword ManagerDn globalStorageOptions persistentStorageOptions
viewerAllowBrowser = $groups =~ /\bsu\b/
viewerAllowDiff = $groups =~ /\bsu\b/

	Parameters:

	enabledModules: list of modules to enable

	defaultModule: module displayed by default route
(http://manager.example.com/manager.(fcgi|psgi)

	viewerHiddenKeys: keys not displayed by Viewer

	viewerAllowBrowser: allow to browse other configurations

	viewerAllowDiff: enable “difference with previous” link

Danger

You have to set access rules to allow/deny users to access modules.

In Manager: * Declare a Virtual Host : manager.example.com * Set an
access rule for each enabled module :

	Configuration : ^/(.*?.(fcgi|psgi)/)?(manager.html|confs|$) = $uid
eq ‘dwho’

	Notifications : ^/(.*?.(fcgi|psgi)/)?notifications = $uid eq ‘dwho’

	Sessions : ^/(.*?.(fcgi|psgi)/)?sessions = $uid eq ‘dwho’

	Viewer : ^/(.*?.(fcgi|psgi)/)?viewer = $uid =~ /b(?:dwho|rtyler)b/

	Default : $uid =~ /b(?:dwho|rtyler)b/

Attention

To avoid that Read-Only users can access to
configuration module by using default route, keep in mind to set
‘defaultModule’ option

ContextSwitching plugin

This plugin allows certain users to switch context other user. This may
be useful when providing assistance or when testing privileges. Enter
the uid of the user you’d like to switch context to.

Configuration

Just enable it in the Manager (section “plugins”) by setting a rule.
ContextSwitching can be allowed or denied for specific users.
Furthermore, specific identities like administrators or anonymous users
can be forbidden to assume.

	Parameters:

	Use rule: Rule to enable or define which users may use this plugin
(By example: $uid eq ‘dwho’ && $authenticationLevel > 2).

	Identities use rule: Rule to define which identities can be
assumed. Useful to prevent impersonation of certain sensitive
identities like CEO, administrators or anonymous/protected users.

	Unrestricted users rule: Rule to define which users can switch
context of ALL users. Identities use rule is bypassed.

	Allow 2FA modifications: This option must be enabled to append,
verify or delete a second factor during context switching.

	Stop by logout: Stop context switching by sending a logout
request.

Danger

During context switching authentication process, all
plugins are disabled. In other words, all entry points like afterData,
endAuth and so on are skipped. Therefore, second factors or
notifications by example will not be prompted and login history is not updated!

Attention

ContextSwitching plugin works only with a userDB
backend. You can not switch context with federated authentication.

Attention

Used identity, start and end of switching context process are logged!

contextSwitchingPrefix is used to store real user’s session Id. You can
set this prefix (‘switching’ by default) by editing lemonldap-ng.ini
in [portal] section:

[portal]
contextSwitchingPrefix = switching

Decrypt value plugin

This plugin allows us to decrypt ciphered values. LL::NG can be
configured to send encrypted values to protected applications by using
extended functions.

Configuration

Just enable it in the Manager (section “plugins”) by setting a rule.
DecryptValue plugin can be allowed or denied for specific users.

	Parameters:

	Use rule: Select which users may use this plugin

	Decrypt functions: Set functions used for decrypting ciphered
values. Each function is tested until one succeeds. Let it blank
to use internal decrypt function.

Danger

Custom functions must be defined into
Lemonldap::NG::Portal::My::Plugin and set:

My::Plugin::function1 My::Plugin::function2

Login History

Presentation

LemonLDAP::NG allows one to store user logins and login attempts in
their persistent session.

Users can see their own history in menu, if menu module
Login history is enabled.

Session history is always visible in session explorer for
administrators.

Configuration

This feature can be enabled and configured in Manager, in
General Parameters » Plugins » Login History.
You can define how many logins and failed logins will be stored.

A login is considered as successful if user get authenticated and is
granted a session; as failed, if he fails to authenticate or if he is
not allowed to open a session. In other cases which result on
impossibility to authenticate user, to retrieve data or to create a
session, nothing is stored.

By default, login time and IP address are stored in history, and the
error message prompted to the user for failed logins. It is possible to
store any additional session data. For example to store authentication
mode, you can set in Session data to store a new key _auth with
value Authentication mode. The value will be used to display the
data.

To allow the Login History tab in Menu, configure it in
General Parameters > Portal > Menu > Modules (see
portal menu configuration).

You can also display a check box on the authentication form, to allow
user to see their login history before being redirected to the protected
application (see
portal customization).

Force Authentication Addon

forceAuthentication plugin forces users to authenticate again to access
to Portal. Plugin DISABLED by default.

Users can access all protected applications except Portal.

Users have to authenticate again to access to Portal if there last login
is older than 5 seconds by default.

Configuration

To enabled forceAuthentication plugin :

Go in Manager, General Parameters » Advanced Parameters »
Security » Force authentication and set to On.

To modify last login interval (5 seconds by default) edit
lemonldap-ng.ini in section [portal]:

[portal]
portalForceAuthnInterval = 5

Global logout plugin

This plugin allows a user to log out of all his active sessions.

Configuration

Just enable it in the Manager (section “plugins”).

	Parameters:

	Activation: Enable/Disable or set a rule to select which users
are allowed to close there sessions.

	Auto accept time: Enable/Disable timer. If timer is disabled,
all opened sessions will be immediately closed.

	Custom parameter: Session attribut to display at global logout

Note

To display more than one session attribute, you can create a
macro like this :

user_USER => "$uid_" . uc $uid

Grant Session

Presentation

The goal of this plugin is to evaluate different conditions before
allowing a user to open a session on the portal. When a condition is not
met, then the user is prompted with a customized message.

Configuration

This plugin is enabled by default.

To configure rules, go in General Parameters > Sessions >
Opening conditions.

You can then create rules with these fields:

	Comment: a label for your rule, than can be used to order it
(rules are evaluated by alphabetical order).

	Rule: The condition that will be evaluated. If this condition
does not return true, then the session is refused.

	Message: The message that will be displayed. That message can
contain session data as user attributes or macros.

Tip

By example, you can set a message like this:
“hello $uid your are not allowed to login”

Impersonation plugin

This plugin allows certain users to assume the identity of another user.
A privileged user first logs in with its real account and can then
choose another profile to appear as. This feature can be especially
useful for training/learning or development platforms.

Attention

This plugin should not be used on production instance,
prefer ContextSwitching plugin.

Configuration

Just enable it in the Manager (section “plugins”) by setting a rule.
Impersonation can be allowed or denied for specific users. Furthermore,
specific identities like administrators or anonymous users can be
protected from being impersonated.

	Parameters:

	Use rule: Rule to allow/deny users to impersonate or define
which users may use this plugin.

	Identities use rule: Rule to define which identities can be
assumed. Useful to prevent impersonation of certain sensitive
identities like CEO, administrators or anonymous/protected users

	Unrestricted users rule: Rule to define which users can assume
ALL users. Identities use rule is bypassed.

	Hidden attributes: Attributes not displayed

	Skip empty values: Do not use empty profile attributes

	Merge spoofed and real SSO groups: Can be useful for
administrators to keep higher privileges. “Special rule” field can
be used to set SSO groups to merge if exist in real session.
Multivalue separator is used. By example :
su; admins; anonymous

Danger

You HAVE TO modify REMOTE_USER to log both real AND
spoofed uid.

Set a macro like this :

_whatToTrace -> $real__user ? "$real__user/$_user" : "$_user/$_user"

and set General Parameters > Logs > REMOTE_USER with _whatToTrace

Attention

Both spoofed and real session attributes can be used to
set access rules, groups or macros.

By example : $real_uid && $real_uid eq 'dwho' or $real_groups && $real_groups =~ /\bsu\b/

Keep in mind that real session is computed first. Afterward, if access
is granted, impersonated session is computed with real and spoofed
session attributes if Impersonation is allowed.
So, real_ attributes are computed by second authentication process.
To avoid Perl warnings, you have to prefix regex with $real_var &&.

Attention

By example, to prevent impersonation as ‘dwho’ set
Identities use rule like :

$uid ne 'dwho'

impersonationPrefix is used to rename user’s real profile attributes.
You can set real attributes prefix (‘real_’ by default) by editing
lemonldap-ng.ini in section [portal]:

[portal]
impersonationPrefix = real_

Find user plugin

This plugin allows unauthenticated users to search for an user account to impersonate. This may be useful to randomly provide an
identifier depending on allowed searching attributes and excluded values.

Attention

FindUser plugin works only if Impersonation plugin is enabled.

Configuration

Just enable it in the Manager (section “plugins”). Then, set searching attributes used for selecting accounts and randomly suggest one of them in login form. Excluding attributes can also be defined to exclude some user accounts and avoid to provide them.

	Parameters:

	Activation: Enable / Disable this plugin

	Character used as wildcard: Character that can be used by users as wildcard. An empty value disable wildcarded search requests

	Parameters control: Regular expression used for checking searching values syntax

	User accounts URL: User database URL to search on if REST backend is used. Let it blank to use default user data URL.

	Searching attributes: For each attribute, you have to set a key (attribute as defined in UserBD) and a value that will be display in login form (placeholder). A value can be a multivalued list separated by multiValuesSeparator parameter (General Parameters > Advanced parameters > Separator). See note below.

	Excluding attributes: You can defined here attributes used for excluding accounts. Set keys corresponding to UserBD attributes and values to exclude. A value can be a multivalued list separated by multiValuesSeparator parameter (General Parameters > Advanced parameters > Separator)

Note

You can provide a ‘multiValuesSeparator’ separated list of allowed searching values that will be displayed as an HTML <select> list

attribute#placeholder[#empty] => value1; placeholder1; value2; placeholder2

For example

uid#Identity => dwho; Dr Who; rtyler; Rose Tyler; msmith; Mr Smith

uid#Identity#1 => dwho; Dr Who; rtyler; Rose Tyler (allow empty value)

Entries are sorted by alphabetical order.

Attention

LDAP filter works only if an objectClass is set.

Attention

Searching request is built based on provided parameters value depending on users backend like this:

request => searchAttr1=value && searchAttr2=value && not excludeAttr1=value && not excludeAttr2=value

Danger

This plugin works only with a users backend and of course if the searching or excluding attributes are existing.

Danger

With AuthChoice, you must set which module will be called by this plugin (Backend choice by users).

Notifications system

LemonLDAP::NG can be used to notify some messages to users. If a user
has got some messages, they will be displayed when he access to the
portal. If a message contains some check boxes, the user has to check
all of them else he can not access to the portal and retrieves his
session cookie.

A notification explorer is available in Manager, and notifications can
be set for all users, with possibility to use display conditions. When
the user accept the notification, notification reference is stored in
his persistent session.

Installation

Activation

To activate notifications system:

Go to Manager General Parameters » Plugins » Notifications » Activation

or in lemonldap-ng.ini [portal] section:

[portal]
notification = 1

Explorer

Notifications explorer allows users to see and display theirs accepted
notifications. Disable by default, you just have to activate it in the
Manager (General Parameters » Plugins » Notifications »
Explorer)

or in lemonldap-ng.ini [portal] section:

[portal]
notificationsExplorer = 1

By default, just the three last notifications are displayed. You can
modify this by editing lemonldap-ng.ini [portal] section:

[portal]
notificationsMaxRetrieve = 3

Usage

When enabled, /mynotifications URL path is handled by this plugin.

Known issue

An XML document can contain several notifications messages. Just the
first one can be searched and displayed!

Attention

Listed notifications are extracted from users
persistent session (notification reference and accepted date). ONLY the
notifications explorer can found in notifications backend are available
to be displayed. Notifications content (title, subtitle and so on…) is
not stored into persistent session.

Storage

By default, notifications will be stored in the same database as
configuration:

	if you use “File” system and your “dirName” is set to
/usr/local/lemonldap-ng/conf/, the notifications will be stored in
/usr/local/lemonldap-ng/notifications/

	if you use “CDBI” or “RDBI” system, the notifications will be stored
in the same database as configuration and in a table named
“notifications”.

	if you use “LDAP” system, the notifications will be stored in the
same directory as configuration and in a branch named
“notifications”.

You can change default parameters using the “notificationStorage” and
“notificationStorageOptions” parameters with the same syntax as
configuration storage parameters. To do this in Manager, go in General
Parameters > Plugins > Notifications.

File

Parameters for File backend are the same as
File configuration backend.

Attention

You need to create yourself the directory and set write
access to Apache user. For example:

mkdir /usr/local/lemonldap-ng/notifications/
chown www-data /usr/local/lemonldap-ng/notifications/

Tip

The file name default separator is _, this can be a
problem if you register notifications for users having _ in their
login. You can change the separator with the fileNameSeparator
option, and set another value, for example @.

To summary available options:

	dirName: directory where notifications are stored.

	fileNameSeparator: file name separator.

DBI

Parameters for DBI backend are the same as
DBI configuration backend.

Attention

You have to create the table by yourself:

CREATE TABLE notifications (
 date datetime NOT NULL,
 uid varchar(255) NOT NULL,
 ref varchar(255) NOT NULL,
 cond varchar(255) DEFAULT NULL,
 xml longblob NOT NULL,
 done datetime DEFAULT NULL,
 PRIMARY KEY (date, uid,ref)
)

To summary available options:

	dbiChain: DBI connection.

	dbiUser: DBI user.

	dbiPassword: DBI password.

	dbiTable: Notifications table name.

LDAP

Parameters for LDAP backend are the same as
LDAP configuration backend.

Attention

You have to create the branch by yourself

To summary available options:

	ldapServer: LDAP URL.

	ldapBindDN: LDAP user.

	ldapBindPassword: LDAP password.

	ldapConfBase: Notifications branch DN.

Note

DBI configuration example:

notificationStorage = DBI
notificationStorageOptions={ \
 'dbiChain' => 'DBI:Pg:dbname=llng;host=mabdd;port=5432', \
 'dbiTable' => 'notifications', \
 'dbiUser' => 'user', \
 'dbiPassword' => 'qwerty', \
 'type' => 'CDBI', \
}

Wildcard

The notifications module uses a wildcard to manage notifications for all
users. The default value of this wildcard is allusers, but you can
change it if allusers is a known identifier in your system.

To change it, go in General Parameters > Plugins >
Notifications > Wildcard for all users, and set for example
alluserscustom.

Then creating a notification for alluserscustom will display the
notification for all users.

Using notification system

Attention

Since version 2.0, notifications are now stored in JSON
format. If you want to keep old format, select “use old format” in the
Manager. Note that notification server depends on chosen format: REST
for JSON and SOAP for XML.

Notification format

Notifications are JSON (default) or XML files containing:

	<notification> element(s) :

	Required attributes:

	date: creation date (format YYYY-MM-DD WITHOUT time!)

	ref: a reference that can be used later to know what has been
notified and when (Avoid _ character)

	uid: the user login (it must correspond to the attribute set in
whatToTrace parameter, uid by default), or the wildcard string
(by default: allusers) if the notification should be
displayed for every user.

	Optional attributes:

	condition: condition to display the notification, can use all
session variables.

	Sub elements:

	<title>: title to display: will be inserted in HTML page
enclosed in <h2 class=”notifText”>…</h2>

	<subtitle>: subtitle to display: will be inserted in HTML page
enclosed in <h2 class=”notifText”>…</h2>

	<text>: paragraph to display: will be inserted in HTML page
enclosed in <p class=”notifText”>…</p>

	<check>: paragraph to display with a checkbox: will be inserted
in HTML page enclosed in <p class=”notifCheck”><input
type=”checkbox” />…</p>

Attention

All other elements will be removed including HTML
elements like .

Tip

One notification XML document can contain several
notifications messages.

Several notifications can be inserted with a single request by using an
array of JSON (Tested with an array of 10,000 elements)

Examples

JSON

[{
"uid": "foo",
"date": "2009-01-27",
"reference": "ABC",
"title": "You have new authorizations",
"subtitle": "Application 1",
"text": "You have been granted to access to appli-1",
An array is required to set multi checkboxes
"check": [
 "I agree",
 "Yes, I'm sure"
]
},
{
"uid": "bar",
"date": "2009-01-27",
"reference": "ABC",
"title": "You have new authorizations",
"subtitle": "Application 1",
"text": "You have been granted to access to appli-1",
"check": "I agree"
}] # No comma at the end

Tip

JSON format notifications are displayed sorted by date and
reference

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>
<notification uid="foo.bar" date="2009-01-27" reference="ABC">
<title>You have new authorizations</title>
<subtitle>Application 1</subtitle>
<text>You have been granted to access to appli-1</text>
<subtitle>Application 2</subtitle>
<text>You have been granted to access to appli-2</text>
<subtitle>Acceptation</subtitle>
<check>I know that I can access to appli-1 </check>
<check>I know that I can access to appli-2 </check>
</notification>
<notification uid="allusers" date="2009-01-27" reference="disclaimer" condition="$ipAddr =~ /^192/">
<title>This is your first access on this system</title>
<text>Be a nice user and do not break it please.</text>
<check>Of course I am not evil!</check>
</notification>
</root>

Create new notifications with notifications explorer

In Manager, click on Notifications and then on the Create
button.

[image: image0]

Then fill all inputs to create the notification. Only the condition is
not mandatory.

When all is ok, click on Save.

Notification server

LemonLDAP::NG provides two notification servers : SOAP and REST
depending on format.

If enabled, the server URL is https://auth.your.domain/notifications.

Notification server provides three API to insert (POST), delete (DELETE)
or list (GET) notification(s).

Available options:

	Server: Enable/Disable notification server

	Default condition: Condition appended to ALL notifications
inserted by notification server (JSON format only)

	Notification parameters to send: Notifications parameters
returned by GET method

	HTTP methods: Enable/Disable HTTP methods

Attention

If notification server is enabled, you have to protect
this URL by using the web server because there is no authentication
required to use it.

Example:

REST/SOAP functions for insert/delete/list notifications (disabled by default)
<LocationMatch ^/(index\.fcgi/)?notifications>
 <IfVersion >= 2.3>
 Require ip 192.168.2.0/24
 </IfVersion>
 <IfVersion < 2.3>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.2.0/24
 </IfVersion>
</LocationMatch>

XML notifications through SOAP

If you use old XML format, new notifications can be inserted or deleted
by using SOAP request, once SOAP is activated:

* Insertion example in Perl

#!/usr/bin/perl

use SOAP::Lite;
use utf8;

my $lite = SOAP::Lite
 ->uri('urn:Lemonldap::NG::Common::PSGI::SOAPService')
 ->proxy('http://auth.example.com/notifications');

$r = $lite->newNotification(
'<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>
<notification uid="foo.bar" date="2009-01-27" reference="ABC">
<text> You have been granted to access to appli-1 </text>
<text> You have been granted to access to appli-2 </text>
<check> I know that I can access to appli-1 </check>
<check> I know that I can access to appli-2 </check>
</notification>
</root>
');

if ($r->fault) {
 print STDERR "SOAP Error: " . $r->fault->{faultstring};
}
else {
 my $res = $r->result();
 print "$res notification(s) have been inserted\n";
}

* Deletion example in Perl

#!/usr/bin/perl

use SOAP::Lite;
use utf8;

my $lite = SOAP::Lite
 ->uri('urn:Lemonldap::NG::Common::CGI::SOAPService')
 ->proxy('http://auth.example.com/index.pl/notification');

$r = $lite->deleteNotification('foo.bar', 'ABC');

if ($r->fault) {
 print STDERR "SOAP Error: " . $r->fault->{faultstring};
}
else {
 my $res = $r->result();
 print "$res notification(s) have been deleted\n";
}

JSON notifications through REST

Insertion example with REST API

Using JSON, you just have to POST json files.

For example with curl:

curl -X POST -H "Content-Type: application/json" -H "Accept: application/json" -d @notif.json http://auth.example.com/notifications

Deletion example with REST API

DELETE API is available with LLNG ≥ 2.0.6

For example with curl:

curl -X DELETE -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/<uid>/<reference>

List example with REST API

GET API is available with LLNG ≥ 2.0.6

For example with curl:

Retrieve 'wildcard' notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications

Retrieve all pending notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/_allPending_

Retrieve all existing notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/_allExisting_

Retrieve all <uid>'s notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/<uid>

Retrieve <uid>/<reference> notification parameters
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/<uid>/<reference>

Test notification

You’ve just to insert a notification and connect to the portal using the
same UID. You will be prompted.

[image: image1]

Try also to create a global notification (to the uid “allusers”), and
connect with any user, the message will be prompted.

Status pages

Portal Status (experimental)

The Portal displays in JSON format its activity. It can provide a view
of all returned codes.

Configuration

	Ordered List ItemSet portalStatus = 1 in lemonldap-ng.ini file
(section [Portal])

	Note that handler status must also been enabled

	The URL http://portal/status must be protected by your webserver
configuration

Handler Status

Presentation

When status feature is enabled, Handlers and portal will collect
statistics and save them in their local cache. This means that if
several Handlers are deployed, each will manage its own statistics.

Tip

This page can be browsed for example by
MRTG [http://oss.oetiker.ch/mrtg/] using the
MRTG monitoring script.

Statistics are collected through a daemon launched by the Handler. It
can be supervised in system processes.

The statistics are displayed when calling the status path on an Handler
(for example: http://reload.example.com/status).

Example of status page:

[image: image0]

Configuration

Nginx

You need to give access to status path in the Handler Nginx
configuration:

server {
 listen __PORT__;
 server_name reload.__DNSDOMAIN__;
 root /var/www/html;
 ...
 location = /status {
 allow 127.0.0.1;
 deny all;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:__FASTCGISOCKDIR__/llng-fastcgi.sock;
 fastcgi_param LLTYPE status;
 }
}

Apache

You need to give access to status path in the Handler Apache
configuration:

Uncomment this to activate status module
<Location /status>
 Order deny,allow
 Allow from 127.0.0.0/8
 PerlHeaderParserHandler Lemonldap::NG::Handler->status
</Location>

Then restart Apache.

Tip

You should change the Allow directive to match
administration IP, or use another Apache protection mean.

Portal data

By default Apache handler status process listen to localhost:64321
(UDP). You can change this using LLNGSTATUSLISTEN environment
variable. If you want to collect portal data, you just have to set
LLNGSTATUSHOST environment variable (see comments in our
``portal-apache2.conf``).

<Files *.fcgi>
 SetHandler fcgid-script
 # For Authorization header to be passed, please uncomment one of the following:
 # for Apache >= 2.4.13
 #CGIPassAuth On
 # for Apache < 2.4.13
 #RewriteCond %{HTTP:Authorization} ^(.*)
 #RewriteRule .* - [e=HTTP_AUTHORIZATION:%1]
 Options +ExecCGI
 header unset Lm-Remote-User
</Files>
FcgidInitialEnv LLNGSTATUSHOST 127.0.0.1:64321

LemonLDAP::NG

Edit lemonldap-ng.ini, and activate status in the handler
section:

[all]
Set status to 1 if you want to have the report of activity (used for
example to inform MRTG)
status = 1

Then restart webserver.

Advanced

	You can also open the UDP port with Nginx if you set
LLNGSTATUSLISTEN environment variable (host:port)

	When querying status (using portal or handler status) and if UDP is
used, query is given to LLNGSTATUSHOST (host:port) and response
is waiting on a dynamic UDP port given in query (between 64322 and
64331). By default this dynamic UDP port is opened on loopback
(``localhost`` entry in ``/etc/hosts``). To change this, set an IP
address or a host using LLNGSTATUSCLIENT environment variable.

Public pages

Note

Public pages are available since version 1.9.8.

Presentation

Public pages are an easy way to build pages based on LL::NG portal skin.
You can for example create a landing page or customize error pages with
it.

A public page is just a template created in
portal/skins/yourskin/public/ directory, for example test.tpl. This
page can then be displayed with this URL:
http://auth.example.com/public?page=test

Page creation

Create the public/ directory :

mkdir /var/lib/lemonldap-ng/portal/skins/bootstrap/public

Create the new page:

vi /var/lib/lemonldap-ng/portal/skins/bootstrap/public/test.tpl

<TMPL_INCLUDE NAME="../header.tpl">

<div class="container">
 <div class="alert alert-success">
 TEST
 </div>
</div>

<TMPL_INCLUDE NAME="../footer.tpl">

Display the page: http://auth.example.com/public?page=test

Refresh session plugin (API)

This plugin appends an endpoint to refresh sessions by user. It provides
https://portal/refreshsession endpoint. Protect it by webserver
configuration.

This plugin is available with LLNG ≥ 2.0.7.

Usage

This endpoint accepts only POST requests with a JSON content:

	Request

	Response

	{"uid":"userid"}

	{"updated":1,"errors":0}

Reset password by mail

Presentation

LL::NG can propose a password reset form, for users who loose their
password (this kind of application is also called a self service
password interface).

Kinematics:

	User clicks on the link Reset my password

	User enters his email (or another information) in the password reset
form

	LL::NG try to find the user in users database with the given
information

	A mail with a token is sent to user

	The user click on the link in the mail

	LL::NG validate the token and propose a password change form

	The user can choose a new password or ask to generate one

	The new password is sent to user by mail if user ask to generate one,
else the mail only confirm that the password was changed

Tip

If LDAP backend is used, and LDAP password
policy is enabled, the ‘password reset flag is set to true when password
is generated, so that the user is forced to change his password on next
connection. This feature can be disabled in
LDAP configuration.

Tip

If the user do a new password reset request but there is
already a request pending, the user can ask the confirmation mail to be
resent. The request validity time is a configuration parameter.

Configuration

The reset password link must be activated, see
portal customization.

The SMTP server must be setup, see SMTP server setup.

Then go in Manager, General Parameters » Plugins »
Password management :

	Password reset mail content:

	Success mail subject: Subject of mail sent when password is
changed (default: [LemonLDAP::NG] Your new password)

	Success mail content (optional): Content of mail sent when
password is changed

	Confirmation mail subject: Subject of mail sent when password
change is asked (default: [LemonLDAP::NG] Password reset
confirmation)

	Confirmation mail content (optional): Content of mail sent
when password change is asked

Attention

By default, mail content are empty in order to use HTML
templates:

	portal/skins/common/mail_confirm.tpl

	portal/skins/common/mail_password.tpl

If you define mail contents in Manager, HTML templates will not be used.

	Other:

	Page URL: URL of password reset page (default:
[PORTAL]/resetpwd)

	Validity time of a password reset request: number of seconds
for password reset request validity. During this period, user can
ask the confirmation mail to be resent (default: session timeout
value)

	Display generate password box: display a checkbox to allow
user to generate a new password instead of choosing one (default:
disabled)

* **Regexp for password generation**: Regular expression used to generate the password (default: [A-Z]{3}[a-z]{5}.\d{2})

Certificate reset

Presentation

This plugin allows users to reset their certificate informations.

Kinematics:

	User click reset certificate button.

	He enters his mail.

	LL::NG looks for the user in users database with given information.

	An email with a link is sent if user exists.

	User clicks on the link and he is redirected to the portal.

	The portal asks him to upload his certificate file (base64, pem
only).

	A confirmation mail is sent to confirm the certificate has been
successfully reset.

Danger

LDAP backend supported only

Configuration

Requirements

You have to activate the certificate reset link in the login page, go in
Manager, General Parameters → Portal → Customization →
Buttons on login page→ Reset your Certificate

The SMTP server must be setup, see SMTP server setup.

The register module also must be setup. Go in Manager,
General Parameters → Authentication parameters →
Register Module and choose your module.

Manager Configuration

Go in Manager, General Parameters → Plugins →
Certificate Reset Management:

Certificate reset mail content:

	Certificat reset mail subject: Subject of mail sent when certificate is reset

	Certificat reset mail content: (optional): Content of mail sent when certificate is reset

	Confirmation mail subject: Subject of mail sent when certificate reset is asked

	Confirmation mail content: (optional) Content of mail sent when certificate is asked

Attention

By default, mail contents are empty in order to use
templates:

	portal/skins/common/mail_certificateConfirm.tpl

	portal/skins/common/mail_certificateReset.tpl

If you define custom mail contents in Manager, then templates won’t be
used.

Other

	Reset Page URL: URL of certificate reset page (default: [PORTAL]/certificateReset)

	Certificate descrition attribute Name: Attribute where to save certificate description name (Default description)

	Certificate hash attribute Name: Attribute where to store certificate hash (Default userCertificate;binary)

	Minimun duration before expiration: number of days of validity before certificate expires. Default 0.

Danger

.p12 certificates only.

REST services

LL::NG portal is a REST server that gives access to configuration,
session and also authentication.

Portal REST services

Authentication

The authentication service is always available with REST, you just need
to send credentials on portal URL. But by default, the portal is
protected by one time tokens to prevent CSRF.
You must disable them or set a rule (configuration parameter
requireToken) so token will not be required for REST requests, for
example:

$env->{HTTP_ACCEPT} !~ m:application/json:

API

Request parameters:

	Endpoint: /

	Method: POST

	Request headers:

	Accept: application/json

	POST data:

	user: user login

	password: user password

	xxx: optional parameters, like lmAuth if your portal uses
Choice or spoofId to impersonate.

The JSON response fields are:

	result: authentication result, 0 if it fails, 1 if it
succeed

	error: error code, the corresponding error can be found in
Lemonldap::NG::Portal::Main::Constants

	id: if authentication succeed, the session id is returned in this
field

Tip

You can also get the cookie by reading the response header
Cookie returned by the portal.

Attention

Before version 2.0.4, the response to a success
authentication had no id field, and error field was named
code (use Cookie header to get id value).

Example

	Request with curl:

curl -H "Accept: application/json" -d user=rtyler -d password=rtyler http://auth.example.com/ | json_pp

Attention

With cURL > 7.18.0, to include special characters
like @, & or + in the cURL POST data:

curl -H "Accept: application/json" -d name=rtyler --data-urlencode passwd=@31&3+*J http://auth.example.com/ | json_pp

	Response for bad authentication:

{
 "result" : 0,
 "error" : 5
}

	Response for good authentication:

{
 "result" : 1,
 "error" : "0",
 "id" : "b048bf87ca401da1d89419813e3acf466d5e4465fe3a1f7adfd8240bd161bde2"
}

Sessions

REST functions for sessions are protected by Web Server, you can change
this in portal configuration.

See REST session backend documentation for
more.

Configuration

REST functions for configuration are protected by Web Server, you can
change this in portal configuration.

See REST configuration backend documentation for
more.

SOAP services (deprecated)

LL::NG portal provide a SOAP server that can be enable to give
configuration and/or session. These features can be enabled using the
manager.

Portal SOAP services

SOAP functions are not accessible by network by default. SOAP functions
are protected by Web Server, you can change this in
portal configuration.

	Read-only functions (index.pl/sessions or index.pl/adminSessions
paths):

	getCookies(user,password): authentication system. Returns
cookie(s) name and values

	getAttributes(cookieValue): get elements stored in session

	isAuthorizedURI(cookieValue,url): check if user is granted to
access to the function

	getMenuApplications(cookieValue): return a list of
authorizated applications (based on menu calculation)

	Read/Write functions (index.pl/adminSessions paths):

	setAttributes(cookieValue,hashtable): update a session

	newSession: create a session (return attributes)

	deleteSession: delete a session

	get_key_from_all_sessions: list all sessions and return asked
keys

	Notification send function (index.pl/notification):

	newNotification(xmlString): insert a notification for a user
(see Notifications system for more)

	Notification delete function:

	deleteNotification: delete notification(s) for a user (see
Notifications system for more)

Attention

When you use
SOAP sessions backend, it is recommended to
use read-only URL (/index.fcgi/sessions). Write session path is needed
only if you use a remote session explorer or a remote portal

WSDL

You can enable WSDL server in the manager. It will deliver WSDL file
(/portal.wsdl).

Stay connected plugin

This plugin enables persistent connection. It allows us to connect
automatically from the same browser.

Configuration

Just enable it in the manager (section “plugins”).

	Parameters:

	Activation: Enable / Disable this plugin

	Expiration time: Persistent session connection and cookie timeout

	Cookie name: Persistent connection cookie name

Handlers

	AuthBasic Handler

	Cross Domain Authentication

	SSO as a service (SSOaaS)

	Handling server webservice calls

	OAuth2 Handler

	Secure Token Handler

	Handling server webservice calls

	DevOps Handler

	DevOps+ServiceToken Handler

AuthBasic Handler

Presentation

The AuthBasic Handler is a special Handler using AuthBasic method to
authenticate and grante access to a virtual host.

The Handler sends a WWW-Authenticate header to the client, to request
user id and password. Then it checks credentials by using LL::NG REST
web service (REST session service must be enabled in the manager). Once
session is granted, the Handler will check authorizations like the
standard Handler.

This feature can be useful to allow a third party application to access
a virtual host with user credentials by sending a Basic challenge to it.

Configuration

Portal

REST server must be enabled on portal.

Virtual host

You just have to set “Type: AuthBasic” in the virtualHost options in the
manager.

If you want to protect only a virtualHost part, keep type on “Main” and
set type in your configuration file:

	Apache: use simply a PerlSetVar VHOSTTYPE AuthBasic

	Nginx: create another FastCGI with a
fastcgi_param VHOSTTYPE AuthBasic; (and remove error_page 401)

Handler parameters

No parameters needed. But you have to allow REST sessions web services,
see REST sessions backend, enable local cache
(enabled by default in lemonldap-ng.ini) and allow source IP addresses
to access required locations in Portal Virtual Host.

Danger

With AuthBasic handler, you have to disable CSRF token by
setting a special rule based on source IP addresses like this :

requireToken => $env->{REMOTE_ADDR} !~ /^127.0.[1-3].1$/

With Backend choice by users, you have to declare which authentication module is
requested by handler to create global session.

Go to:
General Parameters > Authentication parameters > Choice parameters

and set authentication module’s name :

Choice used for password authentication => 2_LDAP (by example)

Attention

With HTTPS, you may have to set LWP::UserAgent
object with verify_hostname => 0 and SSL_verify_mode => 0.

Go to:

General Parameters > Advanced Parameters > Security > SSL options for server requests

Cross Domain Authentication

Presentation

Cross Domain Authentication (CDA)

Configuration

Go in Manager, General Parameters » Cookies »
Multiple domains and set to On.

To use this feature only locally, edit lemonldap-ng.ini in section
[all]:

[all]
cda = 1

Attention

If your handler is being served by Nginx, you have to
uncomment the following lines in your nginx configuration file:

If CDA is used, uncomment this
auth_request_set $cookie_value $upstream_http_set_cookie;
add_header Set-Cookie $cookie_value;

Handlers

Choose “CDA” as type for each virtualHost concerned by CDA (ie not in
main domain).

SSO as a service (SSOaaS)

Our concept of SSOaaS

Access management provides 3 services:

	Global Authentication: Single Sign-On

	Authorization: to grant authentication is not enough. User rights
must be checked

	Accounting: SSO logs (access) + application logs (transactions and
results)

LL::NG affords all these services (except application logs of course,
but headers are provided to permit this).

Headers setting is an another LL::NG service. LL::NG can provide any
user attributes to an application (see
Rules and headers)

*aaS means that application can drive underlying layer (IaaS for
infrastructure, PaaS for platform,…). So for us, SSOaaS must provide
the ability for an app to manage authorizations and choose user
attributes to set. Authentication can not be really *aaS: app must
just use it, not manage it.

LL::NG affords some features that can be used to provide SSO as a
service: a web application can manage its rules and headers. Docker or
VM images (Nginx only) includes LL::NG Nginx configuration that aims to
a global
LL::NG authorization server.
By default, all authenticated users can access and one header is set:
Auth-User. If application gives a RULES_URL parameter that refers to
a JSON file, authorization server will read it, apply specified rules
and set required headers (see DevOps Handler).

There are two different architectures to do this:

	Using a global FastCGI (or uWSGI) server

	Using front reverse-proxies (some cloud installations use
reverse-proxies in front-end)

Example of a global FastCGI architecture:

[image: image0]

In both case, Handler type must be set to DevOps.

Examples of webserver configuration for Docker/VM images

Using a global FastCGI (or uWSGI) server

Nginx

In this example, web server templates (Nginx only) are configured to
request authorization from a central FastCGI server:

server {
 server_name myapp.domain.com;
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 # Pass authorization requests to Central FastCGI server:
 fastcgi_pass 10.1.2.3:9090;
 fastcgi_param VHOSTTYPE DevOps;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;

 # Set dynamically rules (LLNG will poll it every 10 mn)
 fastcgi_param RULES_URL http://rulesserver/my.json
 }
 location /rules.json {
 auth_request off;
 allow 10.1.2.3;
 deny all;
 }
 location ~ ^(.*\.php)$ {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 # ...
 # Example with php-fpm:
 include snippets/fastcgi-php.conf;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Apache

There is an experimental FactCGI client in LLNG. You just have to
install FCGI::Client and add this in the apache2.conf or your web
applications or proxies.

The following configuration example assumes that you are in a “central
FastCGI” configuration.

<VirtualHost ...>
 ServerName app.tls
 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2::FCGIClient

 # This must point to the central FastCGI server
 PerlSetVar LLNG_SERVER 192.0.2.1:9090

 # Declare this vhost as a DevOps vhost, so that we do not have
 # to declare it in the LemonLDAP::NG Manager
 PerlSetVar VHOSTTYPE DevOps

 # This URL will be fetched by the central FastCGI server and
 # used to make the authentication decision about this virtualhost
 # Make sure the central FastCGI server can reach it
 PerlSetVar RULES_URL http://app.tld/rules.json
 ...
</VirtualHost>

Node.js

Using express [https://github.com/expressjs/express#readme] and
fastcgi-authz-client [https://github.com/LemonLDAPNG/node-fastcgi-authz-client],
you can protect also an Express server. Example:

var express = require('express');
var app = express();
var FcgiAuthz = require('fastcgi-authz-client');
var handler = FcgiAuthz({
 host: '127.0.0.1',
 port: 9090,
 PARAMS: {
 RULES_URL: 'http://my-server/rules.json'
 }
});

app.use(handler);

// Simple express application
app.get('/', function(req, res) {
 return res.send('Hello ' + req.upstreamHeaders['auth-user'] + ' !');
});

// Launch server
app.listen(3000, function() {
 return console.log('Example app listening on port 3000!');
});

Plack application

You just have to enable
Plack::Middleware::Auth::FCGI [https://metacpan.org/pod/Plack::Middleware::Auth::FCGI].
Simple example:

use Plack::Builder;

my $app = sub {
 my $env = shift;
 my $user = $env->{fcgiauth-auth-user};
 return [200, ['Content-Type' => 'text/plain'], ["Hello $user"]];
};

Optionally ($fcgiResponse is the PSGI response of remote FCGI auth server)
#sub on_reject {
my($self,$env,$fcgiResponse) = @_;
my $statusCode = $fcgiResponse->{status};
...
#}

builder
{
 enable "Auth::FCGI",
 host => '127.0.0.1',
 port => '9090',
 fcgi_auth_params => {
 RULES_URL => 'https://my-server/my.json',
 },
 # Optional rejection subroutine
 #on_reject => \&on_reject;
 ;
 $app;
};

Using front reverse-proxies

This is a simple Nginx configuration file. It looks like a standard
LL::NG nginx configuration file except for:

	VHOSTTYPE parameter forced to use DevOps handler

	/rules.json must not be protected by LL::NG but by the web server
itself

This configuration handles *.dev.sso.my.domain URL and forwards
authenticated requests to <vhost>.internal.domain. Rules can be
defined in /rules.json which is located at the website root
directory.

server {
 server_name "~^(?<vhost>.+?)\.dev\.sso\.my\.domain$";
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Force handler type:
 fastcgi_param VHOSTTYPE DevOps;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }
 location /rules.json {
 auth_request off;
 allow 127.0.0.0/8;
 deny all;
 }
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 proxy_pass https://$vhost.internal.domain;
 }
}

Handling server webservice calls

In modern applications, web application may need to request some other
web applications on behalf of the authenticated users. There are three
ways to do this:

	the Ugly : provide to all applications SSO cookie. Not secured
because SSO cookie can be caught and used everywhere, every time by
everyone!!! NOT RECOMMENDED.

	the Bad (Secure Token Handler)
: Deprecated. Can be used in specific cases

	the Good (Service Token Handler): See below ! (Thanks Sergio…)

The “Bad” method consists to give the token (cookie value) to WebApp1
which uses it as cookie header in its request. Since 2.0 version, LL::NG
gives a better way (the Good !) to do this by using limited scope
tokens.

Tokens are time limited (30 seconds by default) and URL restricted.

[image: Kinematic]

Webapp1 handler configuration

Select Main handler type to protect WebApp1 and insert a header
named X-Llng-Token filled with this value:

token($_session_id, 'webapp2.example.com', 'webapp3.example.com', 'serviceHeader1=webapp1.example.com', "testHeader=$uid")

WebApp1 can read this header and use it in its requests by setting the
X-Llng-Token header. The token is built by using the session ID and
authorized virtualhosts list. By default, the Service Token is only
available during 30 seconds and for specified virtualhosts. The token
can be use to send service headers to webapp2 like origin host by
example.

You can set ServiceToken TTL in the virtualHost options in Manager for
each required virtualHost.

You can also set ServiceToken default timeout (30 seconds) by editing
lemonldap-ng.ini in section [handler]:

[handler]
handlerServiceTokenTTL = 30

Note

Service token timeout can be set for each virtual hosts.

Webapp2 handler configuration

Change handler type to ServiceToken. So it is able to manage both
user and server connections. And that’s all !

OAuth2 Handler

[image: image0]

Presentation

This Handler is able to check an OAuth2 access token to retrieve the
user real session and protect a virtual host like a standard Handler
(access control and HTTP headers transmission).

This requires to get an OAuth2 access token through LL::NG Portal (OpenID
Connect server). This access token can then be used in the
Authorization header to authenticate to the Web Service / API
protected by the OAuth2 Handler.

[image: image1]

Tip

In the above schema, the OpenID Connect process is simplified.
How the front application receives the Access Token depends on the
requested flow (Authorization code, Implicit or Hybrid). In all cases,
the application will have an Access Token and will be able to use it to
request a Web Service.

Example:

curl -H "Authorization: Bearer de853461341e88e9def8fcb9db2a81c4" https://oauth2.example.com/api/test | json_pp

{
 check: true,
 user: "dwho"
}

Additional variables

The OAuth2 handler defines a few extra variables that you can use in
rules and headers.

	$_clientId: client ID of the application which requested the Access Token

	$_clientConfKey: configuration key of the application which requested the
Access Token

	$_scope: list of space-separated scopes granted by the Access Token

For example, to grant access to access tokens containing the write scope,
use

$_scope =~ /(?<!\S)write(?!\S)/

Configuration

Protect you virtual host like any other virtual host with the standard
Handler.

Define access rules and headers. Then in Options > Type, choose
OAuth2.

Reference

RFC6750 [https://tools.ietf.org/html/rfc6750]

Secure Token Handler

Presentation

The Secure Token Handler is a special Handler that creates a token for
each request and send it to the protected application. The real user
identifier is stored in a Memcached server and the protected application
can request the Memcached server to get user identifier.

This mechanism allows one to protect an application with an unsafe link
between Handler and the application, but with a safe link between the
Memcached server and the application.

Configuration

Install Cache::Memcached dependency.

Virtual host

You just have to set “Type: SecureToken” in the VirtualHost options in
the manager.

If you want to protect only a virtualHost part, keep type on “Main” and
set type in your configuration file:

	Apache: use simply a PerlSetVar VHOSTTYPE AuthBasic

	Nginx: create another FastCGI with a
fastcgi_param VHOSTTYPE SecureToken;

Note

This handler uses Apache2Filter Module to hide token, prefer
Handling server webservice calls for other
servers.

Handler parameters

SecureToken parameters are the following:

	Memcached servers: addresses of Memcached servers, separated with
spaces.

	Token expiration: time in seconds for token expiration (remove
from Memcached server).

	Attribute to store: the session key that will be stored in
Memcached.

	Protected URLs: Regexp of URLs for which the secure token will be
sent, separated by spaces

	Header name: name of the HTTP header carrying by the secure
token.

	Allow requests in error: allow a request that has generated an
error in token generation to be forwarded to the protected
application without secure token (default: yes)

Attention

Due to Handler API change in 1.9, you need to set these
attributes in lemonldap-ng.ini and not in Manager, for example:

[handler]
secureTokenMemcachedServers = 127.0.0.1:11211
secureTokenExpiration = 60
secureTokenAttribute = uid
secureTokenUrls = .*
secureTokenHeader = Auth-Token
secureTokenAllowOnError = 1

Handling server webservice calls

In modern applications, web application may need to request some other
web applications on behalf of the authenticated users. There are three
ways to do this:

	the Ugly : provide to all applications SSO cookie. Not secured
because SSO cookie can be caught and used everywhere, every time by
everyone!!! NOT RECOMMENDED.

	the Bad (Secure Token Handler)
: Deprecated. Can be used in specific cases

	the Good (Service Token Handler): See below ! (Thanks Sergio…)

The “Bad” method consists to give the token (cookie value) to WebApp1
which uses it as cookie header in its request. Since 2.0 version, LL::NG
gives a better way (the Good !) to do this by using limited scope
tokens.

Tokens are time limited (30 seconds by default) and URL restricted.

[image: Kinematic]

Webapp1 handler configuration

Select Main handler type to protect WebApp1 and insert a header
named X-Llng-Token filled with this value:

token($_session_id, 'webapp2.example.com', 'webapp3.example.com', 'serviceHeader1=webapp1.example.com', "testHeader=$uid")

WebApp1 can read this header and use it in its requests by setting the
X-Llng-Token header. The token is built by using the session ID and
authorized virtualhosts list. By default, the Service Token is only
available during 30 seconds and for specified virtualhosts. The token
can be use to send service headers to webapp2 like origin host by
example.

You can set ServiceToken TTL in the virtualHost options in Manager for
each required virtualHost.

You can also set ServiceToken default timeout (30 seconds) by editing
lemonldap-ng.ini in section [handler]:

[handler]
handlerServiceTokenTTL = 30

Note

Service token timeout can be set for each virtual hosts.

Webapp2 handler configuration

Change handler type to ServiceToken. So it is able to manage both
user and server connections. And that’s all !

DevOps Handler

This handler is designed to read vhost configuration from the website
itself not from LL:NG configuration. Rules and headers are set in a
rules.json file stored at the website root directory (ie
http://website/rules.json). This file looks like:

{
 "rules": {
 "^/admin": "$uid eq 'admin'",
 "default": "accept"
 },
 "headers": {
 "Auth-User": "$uid"
 }
}

If this file is not found, the default rule “accept” is applied and just
“Auth-User” header is sent (Auth-User => $uid).

No specific configuration is required except that:

	you have to choose this specific handler (directly by using
VHOSTTYPE environment variable)

	you can set the loopback URL needed by the DevOps handler to get
/rules.json or use RULES_URL parameter to set JSON file path
(see SSO as a Service). Default to
http://127.0.0.1:<server-port>

Attention

Note that DevOps handler will refuse to compile
rules.json if Safe Jail isn’t enabled.

See SSO as a Service for more

DevOps+ServiceToken Handler

This handler enables both:

	DevOps Handler, base of
SSO as a service (SSOaaS)

	Service token handler, used to control web-api
sub requests

LemonLDAP::NG Databases

	Configuration database
	How to change configuration backend

	File configuration backend

	YAMLFile configuration backend

	SQL configuration backends

	LDAP configuration backend

	MongoDB configuration backends

	Mini MongoDB howto

	SOAP configuration backend (deprecated)

	REST configuration backend

	Local configuration backend

	Sessions database
	How to change session backend

	File session backend

	SQL session backend

	LDAP session backend

	Redis session backend

	MongoDB session backend

	Browseable session backend

	REST session backend

	SOAP session backend

Configuration database

	How to change configuration backend

	File configuration backend

	YAMLFile configuration backend

	SQL configuration backends

	LDAP configuration backend

	MongoDB configuration backends

	Mini MongoDB howto

	SOAP configuration backend (deprecated)

	REST configuration backend

	Local configuration backend

How to change configuration backend

LemonLDAP::NG provides a script to change configuration backend easily
keeping history. It is set in LemonLDAP::NG utilities directory
(convertConfig).

How it works

The convertConfig utility reads 2 LL::NG configuration files
(lemonldap-ng.ini):

	Current: to extract all configuration history

	New: to write all configuration history

Let’s go

	Prepare your new lemonldap-ng.ini file

	Configure your new backend (create SQL database,…)

	Launch the following command:

convertConfig --current=/etc/lemonldap-ng/lemonldap-ng.ini --new=/new/lemonldap-ng.ini

	Install the new lemonldap-ng.ini file at the place of the old file in
all LL::NG servers

	Restart all your Apache servers

Note

Since LemonLDAP 2.0.9, you don’t need the --current and --new options
when migrating from the default file-based backend. Simply run
convertConfig to migrate from the default configuration backend to the
currently configured backend.

See also

Documentation is available for configuration backends :

	SQL

	File

	LDAP

	SOAP proxy mechanism

File configuration backend

This is the default configuration backend. Configuration is stored as
JSON.

Tip

This configuration storage can be shared between different
hosts using:

	SOAP configuration backend proxy

	any files sharing system (NFS, NAS, SAN,…)

Configuration

You just have to configure a directory writable by Apache user and set
it in [configuration] section in your lemonldap-ng.ini file:

[configuration]
type = File
dirName = /var/lib/lemonldap-ng/conf
prettyPrint = 1

Parameters

	dirName: directory under which the configuration files will be stored. It must be writable by your webserver account

	prettyPrint: store files in a readable. Set it to 0 to get a small performance increase when loading/saving configuration

YAMLFile configuration backend

Same as File configuration backend except that
configuration is stored in YAML format.

Configuration

You just have to configure a directory writable by Apache user and set
it in [configuration] section in your lemonldap-ng.ini file:

[configuration]
type = YAMLFile
dirName = /var/lib/lemonldap-ng/conf

SQL configuration backends

There is 2 types of SQL configuration backends for LemonLDAP::NG:

	CDBI: very simple storage (recommended)

	RDBI: triple store storage

Tip

You can use any database engine if it provides a Perl Driver.
You will find here examples for MySQL and PostgreSQL, but other engines
may also work.

See how to change configuration backend.

MySQL

Perl Driver

You need DBD::MySQL Perl module:

	Debian:

apt install libdbd-mysql-perl

	Red Hat:

yum install perl-DBD-MySQL

Database and table creation

Create database:

CREATE DATABASE lemonldap-ng CHARACTER SET utf8;

Use database to create table:

use lemonldap-ng

RDBI

CREATE TABLE lmConfig (
 cfgNum int(11) NOT NULL,
 field varchar(255) NOT NULL DEFAULT '',
 value longtext,
 PRIMARY KEY (cfgNum,field)
);

CDBI

CREATE TABLE lmConfig (
 cfgNum int not null primary key,
 data longtext
);

Grant access

You have to grant read/write access for the manager component. Other
components needs just a read access. You can also use the same user for
all.

Tip

You can use different dbiUser strings:

	one with read/write rights for servers hosting the manager

	one with just read rights for other servers

For example (suppose that our servers are in 10.0.0.0/24 network):

GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES ON lemonldap-ng.lmConfig
 TO lemonldaprw@manager.host IDENTIFIED BY 'mypassword';
GRANT SELECT ON lemonldap-ng.lmConfig
 TO lemonldapro@'10.0.0.%' IDENTIFIED BY 'myotherpassword';

Connection settings

Change configuration settings in /etc/lemonldap-ng/lemonldap-ng.ini
file (section configuration):

[configuration]
type = RDBI
dbiChain = DBI:mysql:database=lemonldap-ng;host=1.2.3.4
dbiUser = lemonldaprw
dbiPassword = mypassword
; optional
dbiTable = mytablename

PostGreSQL

Perl Driver

You need DBD::Pg Perl module:

	Debian:

apt install libdbd-pg-perl

	Red Hat:

yum install perl-DBD-Pg

Database and table creation

Create database:

CREATE DATABASE lemonldap-ng;

Use database to create table:

use lemonldap-ng

RDBI

CREATE TABLE lmconfig (
 cfgnum integer NOT NULL,
 field text NOT NULL,
 value text,
 PRIMARY KEY (cfgNum,field)
);

CDBI

CREATE TABLE lmConfig (
 cfgnum integer not null primary key,
 data text
);

Connection settings

Change configuration settings in /etc/lemonldap-ng/lemonldap-ng.ini
file (section configuration):

[configuration]
type = RDBI
dbiChain = DBI:Pg:database=lemonldap-ng;host=1.2.3.4
dbiUser = lemonldaprw
dbiPassword = mypassword
; optional
dbiTable = mytablename

LDAP configuration backend

Presentation

You can choose to store LemonLDAP::NG configuration in an LDAP
directory.

[image: image0]

Advantages:

	Easy to share between servers with remote LDAP access

	Easy to duplicate with LDAP synchronization services (like SyncRepl
in OpenLDAP)

	Security with SSL/TLS

	Access control possible by creating one user for Manager (write) and
another for portal and handlers (read)

	Easy import/export through LDIF files

The configuration will be store under a specific branch, for example
ou=conf,ou=applications,dc=example,dc=com.

Each configuration will be represented as an entry, which structural
objectClass is by default applicationProcess. The configuration name
is the same that files, so lmConf-1, lmConf-2, etc. This name is used in
entry DN, for example
cn=lmConf-1,ou=conf,ou=applications,dc=example,dc=com.

Then each parameter is one value of the attribute description,
prefixed by its key. For example {ldapPort}389.

The LDIF view of such entry can be:

dn: cn=lmConf-1,ou=conf,ou=applications,dc=example,dc=com
objectClass: top
objectClass: applicationProcess
cn: lmConf-1
description: {globalStorage}'Apache::Session::File'
description: {cookieName}'lemonldap'
description: {whatToTrace}'$uid'
...

Configuration

LDAP server

Configuration objects use standard object class: applicationProcess.
This objectClass allow attributes cn and description. If your
LDAP server do not manage this objectClass, configure other objectclass
and attributes (see below).

We advice to create a specific LDAP account with write access on
configuration branch.

Next create the configuration branch where you want. Just remember its
DN for LemonLDAP::NG configuration.

LemonLDAP::NG

Configure LDAP configuration backend in lemonldap-ng.ini, section
[configuration]:

type = LDAP
ldapServer = ldap://localhost
ldapConfBase = ou=conf,ou=applications,dc=example,dc=com
ldapBindDN = cn=manager,dc=example,dc=com
ldapBindPassword = secret
ldapObjectClass = applicationProcess
ldapAttributeId = cn
ldapAttributeContent = description

Parameters:

	ldapServer: LDAP URI of the server

	ldapConfBase: DN of configuration branch

	ldapBindDN: DN used to bind LDAP

	ldapBindPassword: password used to bind LDAP

	ldapObjectClass: structural objectclass of configuration entry
(optional)

	ldapAttributeId: RDN attribute of configuration entry (optional)

	ldapAttributeContent: attribute used to store configuration
values, must be multivalued (optional)

	ldapVerify: When using a LDAPS or TLS server, whether or not to validate the server certificate. Possible values: require, optional or none.

	ldapCAFile: This allows you to override the default system-wide
certificate authorities by giving a single file containing the CA used by the
LDAP server.

	ldapCAPath: This allows you to override the default system-wide
certificate authorities by giving the path of a directory containing your
trusted certificates.

MongoDB configuration backends

MongoDB [https://www.mongodb.org/] is a NoSQL database that can be
used both for storing configuration and
sessions. You need to install Perl MongoDB
module to be able to use this backend.

See how to change configuration backend to
change your configuration database.

Configuration

To use a MongoDB backend, configure your lemonldap-ng.ini file
(section configuration) :

	Choose MongoDB as type

	Set dbName and collectionName parameters if different than default
values (llConfDB and configuration)

	Set host and if needed db_name username, password and ssl fields as
follow.

Example :

[configuration]
type = MongoDB
dbName = llConfDB
collectionName = configuration
; using a single server
host = 127.0.0.1:27017
; using a replicaSet
; host = mongodb://mongo1.example.com,mongo2.example.com/?replicaSet=myset
ssl = 1
; authentication parameters
db_name = admin
user = lluser
password = llpassword

	Optional parameters (see MongoDB::MongoClient [http://search.cpan.org/perldoc?MongoDB%3A%3AMongoClient] man page)

	
	

	Name

	Comment

	Example

	db_name

	Admin database (default: admin)

	admin

	auth_mechanism

	Authentication mechanism

	PLAIN

	auth_mechanism_properties

	
	

	connect_timeout

	Connection timeout

	10000

	ssl

	Boolean or hash ref (default: 0)

	1

	username

	Username to use to connect

	lluser

	password

	Password

	llpassword

Mini MongoDB howto

Just some commands needed to create collection and user:

$ mongo
connecting to: test
> use configuration
switched to db configuration
> db.createCollection("configuration")
...
> db.createUser({user:"lluser",pwd:"llpassword",roles:["readWrite"]})
...
> exit
bye
$

SOAP configuration backend (deprecated)

You can share your configuration over the network using SOAP proxy
system.

Tip

Note that SOAP is not a real configuration backend, but just a
proxy system to access to your configuration over the network

Attention

SOAP has been deprecated. Prefer to use
REST configuration backend

Configuration

First, configure your real backend

	On your main server, configure a
File,
SQL or
LDAP backend

	Set SOAP parameter to true in the configuration using the manager:
the portal will become a SOAP server

	Configure your web server to allow remote access. Remote SOAP access
is disabled by default. You must change it as follow :

	in portal-apache2.conf :

SOAP functions for configuration access (disabled by default)
<Location /index.fcgi/config>
 Require ip 192.168.2.0/24
</Location>

	in portal-nginx.conf :

SOAP functions for configuration access (disabled by default)
location /index.psgi/config {
 allow 192.168.2.0/24;
}

Next, configure SOAP for your remote servers

Change configuration in lemonldap-ng.ini :

type = SOAP
; Apache
proxy = https://auth.example.com/index.fcgi/config
; Nginx
proxy = https://auth.example.com/index.pcgi/config

You can also add some other parameters

User = lemonldap
Password = mypassword
LWP::UserAgent parameters
proxyOptions = { timeout => 5 }

REST configuration backend

You can share your configuration over the network using REST proxy
system:

	GET /config/latest: get the last config metadata

	GET /config/<cfgNum>: get the metadata for config n° <cfgNum>

	GET /config/<latest|cfgNum>/<key>: get conf key value

	GET /config/<latest|cfgNum>?full=1: get the full configuration

You can retrieve “human readable” error messages:

	GET /error/<lang>/<errNum>: get <errNum> error reference and <lang>
errors file.

If no <lang> provided, ‘en’ errors file is returned.

Tip

Note that REST is not a real configuration backend, but just a
proxy system to access to your configuration over the network

Configuration

First, configure your real backend

	On your main server, configure a
File,
SQL or
LDAP backend

	Enable REST server in the configuration using the manager (in portal
plugins)

	Configure your web server to allow remote access. Remote REST access
is disabled by default. Change it as follow:

* In portal-apache2.conf:

REST functions for configuration access (disabled by default)
<Location /index.fcgi/config>
 Require ip 192.168.2.0/24
</Location>

* In portal-nginx.conf:

REST functions for configuration access (disabled by default)
location /index.psgi/config {
 allow 192.168.2.0/24;
}

Next, configure REST for your remote servers

Change configuration in lemonldap-ng.ini :

type = REST
; Apache
baseUrl = https://auth.example.com/index.fcgi/config
; Nginx
baseUrl = https://auth.example.com/index.psgi/config

You can also add some other parameters

User = lemonldap
Password = mypassword
LWP::UserAgent parameters
proxyOptions = { timeout => 5 }

Local configuration backend

Some admins wants to deploy configuration using lemonldap-ng.ini only.
This backend just return an empty configuration.

Attention

Advanced use only !

Sessions database

	How to change session backend

	File session backend

	SQL session backend

	LDAP session backend

	Redis session backend

	MongoDB session backend

	Browseable session backend

	REST session backend

	SOAP session backend

How to change session backend

LemonLDAP::NG provides a script to change session backend. This script
will help you transfer existing persistent sessions (or offline
sessions) when migrating from one backend to another, or when adding
indexes to a
browseable session backend. It is
available in LemonLDAP::NG utilities directory (convertSessions).

How it works

The convertSessions utility requires you to create a job
configuration file with the following content:

This example migrates psessions from the default File backend to a PostgreSQL database
[sessions_from]
storageModule = Apache::Session::File
storageModuleOptions = { \
 'Directory' => '/var/lib/lemonldap-ng/psessions', \
 'LockDirectory' => '/var/lib/lemonldap-ng/psessions/lock', \
}
Only convert some session types
sessionKind = Persistent, SSO

[sessions_to]
storageModule = Apache::Session::Browseable::Postgres
storageModuleOptions = { \
 'DataSource' => 'DBI:Pg:database=lemonldapdb;host=pg.example.com', \
 'UserName' => 'lemonldaplogin', \
 'Password' => 'lemonldappw', \
 'Commit' => 1, \
 'Index' => 'ipAddr _whatToTrace user', \
 'TableName' => 'psessions', \
}

Invocation

convertSessions -c job.ini

Options:

	-c: job configuration file (mandatory)

	-r oldkey=newkey: rename session keys during conversion (optional, can be given multiple times)

	-i: ignore errors. By default errors will stop the script
execution

	-d: print debugging output

File session backend

File session backend is the more simple session database. Sessions are
stored as files in a single directory. Lock files are stored in another
directory. It can not be used to share sessions between different
servers except if you share directories (with NFS,…) or if you use
SOAP proxy.

Setup

In the manager: set
“Apache::Session::File [http://search.cpan.org/perldoc?Apache::Session::File]”
in “General parameters » Sessions » Session storage » Apache::Session
module” and add the following parameters (case sensitive):

	Required parameters

	
	

	Name

	Comment

	Example

	Directory

	The path to the main directory

	/var/lib/lemonldap-ng/sessions

	LockDirectory

	The path to the lock directory

	/var/lib/lemonldap-ng/sessions/lock

Security

Restrict access to the directories only to the Apache server. Example:

chmod 750 /var/lib/lemonldap-ng/sessions /var/lib/lemonldap-ng/sessions/lock
chown www-data:www-data /var/lib/lemonldap-ng/sessions /var/lib/lemonldap-ng/sessions/lock

SQL session backend

SQL session backend can be used with many SQL databases such as:

	MariaDB / MySQL [https://metacpan.org/pod/Apache::Session::MySQL]

	PostgreSQL [https://metacpan.org/pod/Apache::Session::Postgres]

	Oracle [https://metacpan.org/pod/Apache::Session::Oracle]

	Informix [https://metacpan.org/pod/Apache::Session::Informix]

	Sybase [https://metacpan.org/pod/Apache::Session::Sybase]

	…

Setup

Prepare the database

Your database must have a specific table to host sessions. Here are some
examples for main databases servers.

Attention

If your database doesn’t accept UTF-8 characters in
‘text’ field, use ‘blob’ instead of ‘text’.

MySQL

Create a database if necessary:

mysqladmin create lemonldap-ng

Create sessions table:

CREATE TABLE sessions (
 id char(32) not null primary key,
 a_session text
);

Attention

Change char(32) by varchar(64) if you use the
now recommended SHA256 hash algorithm. See
Sessions for more details

Tip

You can change table name sessions to whatever you want,
just adapt the parameter TableName in module options.

Attention

For a better UTF-8 support, use
DBD::MariaDB [https://metacpan.org/pod/DBD::MariaDB] with
Apache::Session*::MySQL instead of DBD::mysql

PostgreSQL

Create user and role:

su - postgres
createuser lemonldap-ng -P

Entrez le mot de passe pour le nouveau rôle : <PASSWORD>
Entrez-le de nouveau : <PASSWORD>
Le nouveau rôle est-il un super-utilisateur ? (o/n) n
Le nouveau rôle doit-il être autorisé à créer des bases de données ? (o/n) n
Le nouveau rôle doit-il être autorisé à créer de nouveaux rôles ? (o/n) n

Create database:

createdb -O lemonldap-ng lemonldap-ng

Create table:

psql -h 127.0.0.1 -U lemonldap-ng -W lemonldap-ng

Mot de passe pour l'utilisateur lemonldap-ng :
[...]
lemonldap-ng=> create unlogged table sessions (id char(32) not null primary key, a_session text);
lemonldap-ng=> q

Attention

Change char(32) by varchar(64) if you use the
now recommended SHA256 hash algorithm. See
Sessions for more details

Manager

Go in the Manager and set the session module (for example
Apache::Session::Postgres [https://metacpan.org/pod/Apache::Session::Postgres]
for PostgreSQL) in General parameters » Sessions »
Session storage » Apache::Session module and add the following
parameters (case sensitive):

	Required parameters

	Name

	Comment

	Example

	DataSource

	The DBI [https://metacpan.org/pod/DBI] string

	dbi:Pg:dbname=sessions;host=10.2.3.1

	UserName

	The database username

	lemonldap-ng

	Password

	The database password

	mysuperpassword

	Commit

	Required for PostgreSQL

	1

	TableName

	(Optional) Name of the table

	sessions

You must read the man page corresponding to your database
(Apache::Session::MySQL [https://metacpan.org/pod/Apache::Session::MySQL],
…) to learn more about parameters. You must also install the database
connector (https://metacpan.org/pod/DBD::Oracle,
DBD::Pg [https://metacpan.org/pod/DBD::Pg],…)

Attention

For MySQL, you need to set additional parameters:

	LockDataSource

	LockUserName

	LockPassword

Tip

For better performances, you can use specific
browseable session backend.

Learn more at
how to increase Data Base performances.

UTF8 support

If you may store some non-ASCII characters, you must add the parameter
corresponding to your database.

	Database

	Parameter name

	Value

	MySQL

	mysql_enable_utf8

	1

	PostgreSQL

	pg_enable_utf8

	1

	SQLite

	sqlite_unicode

	1

Security

Restrict network access to the database.

You can also use different user/password for your servers by overriding
parameters globalStorage and globalStorageOptions in
lemonldap-ng.ini file.

LDAP session backend

An Apache session module was created by LL::NG team to store sessions in
an LDAP directory.

Attention

This module is not part of LL::NG distribution, and can
be found on CPAN:
Apache::Session::LDAP [http://search.cpan.org/dist/Apache-Session-LDAP/].

Tip

This module is also available on
GitHub [https://github.com/coudot/apache-session-ldap].

Sessions will be stored as LDAP entries, like this:

dn: cn=6fb7c4a170a04668771f03b0a4747f46,ou=sessions,dc=example,dc=com
objectClass: applicationProcess
cn: 6fb7c4a170a04668771f03b0a4747f46
description: [Base64 serialized data]

Setup

Go in the Manager and set the LDAP session module
(Apache::Session::LDAP [http://search.cpan.org/dist/Apache-Session-LDAP/])
in General parameters » Sessions » Session storage »
Apache::Session module and add the following parameters (case
sensitive):

	Required parameters

	Name

	Comment

	Example

	ldapServer

	URI of the server

	ldap://localhost

	ldapConfBase

	DN of sessions branch

	ou=sessions,dc=example,dc=com

	ldapBindDN

	Connection login

	cn=admin,dc=example,dc=password

	ldapBindPassword

	Connection password

	secret

	Optional parameters

	Name

	Comment

	Default value

	ldapObjectClass

	Objectclass of the entry

	applicationProcess

	ldapAttributeId

	Attribute storing session ID

	cn

	ldapAttributeContent

	Attribute storing session content

	description

	ldapVerify

	Perform certificate validation

	require (use none to disable)

	ldapCAFile

	Path of CA file bundle

	(system CA bundle)

	ldapCAPath

	Perform CA directory

	(system CA bundle)

Security

Restrict network access to the LDAP directory, and add specific ACL to
session branch.

You can also use different user/password for your servers by overriding
parameters globalStorage and globalStorageOptions in
lemonldap-ng.ini file.

Redis session backend

Apache::Session::Browseable::Redis [https://metacpan.org/pod/Apache::Session::Browseable::Redis]
is the faster shareable session backend

Setup

Install and launch a Redis server [http://code.google.com/p/redis/].
Install
Apache::Session::Browseable::Redis [https://metacpan.org/pod/Apache::Session::Redis]
Perl module.

In the manager: set
Apache::Session::Browseable::Redis [https://metacpan.org/pod/Apache::Session::Browseable::Redis]
in General parameters » Sessions » Session storage »
Apache::Session module and add the connection parameters for your Redis server(s).

This backend uses the perl bindings for Redis database provided by the Redis perl module [https://metacpan.org/pod/Redis].
A complete list of supported constructor/connection options can be found in the module documentation [https://metacpan.org/pod/Redis].

E.g., Parameters (case sensitive):

	Name

	Comment

	Example

	server

	Redis server @ IP:PORT

	127.0.0.1:6379

	sock

	Redis server @ unix socket

	unix:/path/to/redis.sock

	sentinels

	Redis sentinels list

	127.0.0.1:26379,127.0.0.2:26379,127.0.0.3:26379

	password

	password (== requirepass)

	ChangeMe

	select

	Redis DB

	1

	Index

	Fields to index

	refer to List of fields to index by session type

Security

Restrict network access to the redis server. For remote servers, you can
use SOAP session backend in cunjunction to
increase security for remote server that access through an unsecure
network

MongoDB session backend

Apache::Session::MongoDB [https://metacpan.org/pod/Apache::Session::MongoDB]
is a faster shareable session backend.

Attention

Use an up-to-date version of Apache::Session::MongoDB, at least 1.8.1.

Setup

Install and launch a MongoDB server [https://www.mongodb.org/].
Install
Apache::Session::MongoDB [http://search.cpan.org/perldoc?Apache::Session::MongoDB]
Perl module (version ⩾ 0.15 required). You also need a recent version of
Perl MongoDB
client [http://search.cpan.org/~mongodb/MongoDB-v1.2.2/] (version ⩾
1.00 required).

In the manager: set
Apache::Session::MongoDB [http://search.cpan.org/perldoc?Apache::Session::MongoDB]
in General parameters » Sessions » Session storage »
Apache::Session module and add the following parameters (case
sensitive):

	Optional parameters

	Name

	Comment

	Example

	host

	MongoDB server URI [https://metacpan.org/pod/MongoDB::MongoClient#CONNECTION-STRING-URI]

	127.0.0.1:27017

	db_name

	Session database (default: sessions)

	llconfdb

	collection

	Collection (default: sessions)

	sessions

	auth_mechanism

	Authentication mechanism

	PLAIN

	auth_mechanism_properties

	
	

	connect_timeout

	Connection timeout

	10000

	ssl

	Boolean or hash ref (default: 0)

	1

	username

	Username to use to connect

	lluser

	password

	Password

	llpassword

Advanced connection parameters (Replica Sets, timeouts…) may be
specified in the host parameter. Refer to the perl MongoDB
documentation for
details [https://metacpan.org/pod/MongoDB::MongoClient#CONNECTION-STRING-URI]

Security

Restrict network access to the MongoDB server. For remote servers, you
can use SOAP session backend in cunjunction
to increase security for remote server that access through an unsecure
network

Browseable session backend

Presentation

Browseable session backend
(Apache::Session::Browseable [https://metacpan.org/pod/Apache::Session::Browseable])
works exactly like Apache::Session::* corresponding module but add
index that increase the speed of some operations. It is recommended in production deployments.

Note

Without index, LL::NG will have to retrieve all sessions stored in
backend and deserialize then filter each of them.

The following table list fields to index for each session type:

List of fields to index by session type

	Session Type

	Fields to index

	Sessions (global)

	_whatToTrace _session_kind _utime ipAddr _httpSessionType user

	Persistent sessions

	_session_kind _httpSessionType _session_uid ipAddr _whatToTrace

	CAS sessions

	_cas_id pgtIou

	SAML sessions

	_session_kind _utime _saml_id ProxyID _nameID _assert_id _art_id

	OpenID Connect sessions

	_session_kind _utime

Note

If you have configured LemonLDAP::NG to use something other than
_whatToTrace as the main session identifier, you must replace
_whatToTrace with the new session field in the previous list

See Apache::Session::Browseable man page to see how use indexes.

Tip

It is advised to use separate session backends for standard sessions, SAML
sessions and CAS sessions, in order to avoid unused indexes.

Available backends

	PgJSON Backend (recommended)

	Browseable MySQL session backend

	Browseable LDAP session backend

	Redis session backend

PgJSON session backend

This backend is the recommended one for production installations of LemonLDAP::NG.

Prerequisites

First, make sure you have installed the DBD::Pg perl module.

On Debian-based distributions

apt install libdbd-pg-perl

On Fedora-based distributions

yum install 'perl(DBD::Pg)'

The minimum required version of PostgreSQL is 9.3 with support for JSON column types [https://www.postgresql.org/docs/9.3/functions-json.html]

Make sure you are using at least version 1.2.9 of Apache::Session::Browseable, this might require installing it from Debian Backports or CPAN.

Create database schema

Create the following tables. You may skip the session types you are not going to use, but you need at least sessions and psessions

CREATE TABLE sessions (
 id varchar(64) not null primary key,
 a_session jsonb
);

CREATE INDEX i_s__whatToTrace ON sessions ((a_session ->> '_whatToTrace'));
CREATE INDEX i_s__session_kind ON sessions ((a_session ->> '_session_kind'));
CREATE INDEX i_s__utime ON sessions ((cast (a_session ->> '_utime' as bigint)));
CREATE INDEX i_s_ipAddr ON sessions ((a_session ->> 'ipAddr'));
CREATE INDEX i_s__httpSessionType ON sessions ((a_session ->> '_httpSessionType'));
CREATE INDEX i_s_user ON sessions ((a_session ->> 'user'));

CREATE TABLE psessions (
 id varchar(64) not null primary key,
 a_session jsonb
);
CREATE INDEX i_p__session_kind ON psessions ((a_session ->> '_session_kind'));
CREATE INDEX i_p__httpSessionType ON psessions ((a_session ->> '_httpSessionType'));
CREATE INDEX i_p__session_uid ON psessions ((a_session ->> '_session_uid'));
CREATE INDEX i_p_ipAddr ON psessions ((a_session ->> 'ipAddr'));
CREATE INDEX i_p__whatToTrace ON psessions ((a_session ->> '_whatToTrace'));

CREATE TABLE samlsessions (
 id varchar(64) not null primary key,
 a_session jsonb
);
CREATE INDEX i_a__session_kind ON samlsessions ((a_session ->> '_session_kind'));
CREATE INDEX i_a__utime ON samlsessions ((cast(a_session ->> '_utime' as bigint)));
CREATE INDEX i_a_ProxyID ON samlsessions ((a_session ->> 'ProxyID'));
CREATE INDEX i_a__nameID ON samlsessions ((a_session ->> '_nameID'));
CREATE INDEX i_a__assert_id ON samlsessions ((a_session ->> '_assert_id'));
CREATE INDEX i_a__art_id ON samlsessions ((a_session ->> '_art_id'));
CREATE INDEX i_a__saml_id ON samlsessions ((a_session ->> '_saml_id'));

CREATE TABLE oidcsessions (
 id varchar(64) not null primary key,
 a_session jsonb
);
CREATE INDEX i_o__session_kind ON oidcsessions ((a_session ->> '_session_kind'));
CREATE INDEX i_o__utime ON oidcsessions ((cast(a_session ->> '_utime' as bigint)));

CREATE TABLE cassessions (
 id varchar(64) not null primary key,
 a_session jsonb
);
CREATE INDEX i_c__session_kind ON cassessions ((a_session ->> '_session_kind'));
CREATE INDEX i_c__utime ON cassessions ((cast(a_session ->> '_utime' as bigint)));
CREATE INDEX i_c__cas_id ON cassessions ((a_session ->> '_cas_id'));
CREATE INDEX i_c_pgtIou ON cassessions ((a_session ->> 'pgtIou'));

LemonLDAP::NG configuration

Go in the Manager and set the session module to Apache::Session::Browseable::PgJSON for each session type you intend to use:

	General parameters » Sessions » Session storage » Apache::Session module

	General parameters » Sessions » Persistent sessions » Apache::Session module

	CAS Service » CAS sessions module name

	OpenID Connect Service » Sessions » Sessions module name

	SAML2 Service » Advanced » SAML sessions module name

Then, set the following module options:

	Required parameters

	
	

	Name

	Comment

	Example

	DataSource

	The DBI [https://metacpan.org/pod/DBI] string

	dbi:Pg:database=lemonldap-ng

	UserName

	The database username

	lemonldapng

	Password

	The database password

	mysuperpassword

	TableName

	Table name (optional)

	sessions

	Commit

	1

	This setting is mandatory for PostgreSQL to work

Tip

Unlike other browseable modules, Pg::JSON does not require an Index parameter

Browseable MySQL session backend

Prerequisites

First, make sure you have installed the DBD::mysql perl module.

On Debian-based distributions

apt install libdbd-mysql-perl

On Fedora-based distributions

yum install 'perl(DBD::mysql)'

Create database schema

Create the following tables. You may skip the session types you are not going to use, but you need at least sessions and psessions

CREATE TABLE sessions (
 id varchar(64) not null primary key,
 a_session text,
 _whatToTrace varchar(64),
 _session_kind varchar(15),
 ipAddr varchar(64),
 _utime bigint,
 _httpSessionType varchar(64),
 user varchar(64)
) DEFAULT CHARSET utf8;
CREATE INDEX i_s__whatToTrace ON sessions (_whatToTrace);
CREATE INDEX i_s__session_kind ON sessions (_session_kind);
CREATE INDEX i_s__utime ON sessions (_utime);
CREATE INDEX i_s_ipAddr ON sessions (ipAddr);
CREATE INDEX i_s__httpSessionType ON sessions (_httpSessionType);
CREATE INDEX i_s_user ON sessions (user);

CREATE TABLE psessions (
 id varchar(64) not null primary key,
 a_session text,
 _session_kind varchar(15),
 _httpSessionType varchar(64),
 _whatToTrace varchar(64),
 ipAddr varchar(64),
 _session_uid varchar(64)
) DEFAULT CHARSET utf8;
CREATE INDEX i_p__session_kind ON psessions (_session_kind);
CREATE INDEX i_p__httpSessionType ON psessions (_httpSessionType);
CREATE INDEX i_p__session_uid ON psessions (_session_uid);
CREATE INDEX i_p_ipAddr ON psessions (ipAddr);
CREATE INDEX i_p__whatToTrace ON psessions (_whatToTrace);

CREATE TABLE samlsessions (
 id varchar(64) not null primary key,
 a_session text,
 _session_kind varchar(15),
 _utime bigint,
 ProxyID varchar(64),
 _nameID varchar(128),
 _assert_id varchar(64),
 _art_id varchar(64),
 _saml_id varchar(64)
) DEFAULT CHARSET utf8;
CREATE INDEX i_a__session_kind ON samlsessions (_session_kind);
CREATE INDEX i_a__utime ON samlsessions (_utime);
CREATE INDEX i_a_ProxyID ON samlsessions (ProxyID);
CREATE INDEX i_a__nameID ON samlsessions (_nameID);
CREATE INDEX i_a__assert_id ON samlsessions (_assert_id);
CREATE INDEX i_a__art_id ON samlsessions (_art_id);
CREATE INDEX i_a__saml_id ON samlsessions (_saml_id);

CREATE TABLE oidcsessions (
 id varchar(64) not null primary key,
 a_session text,
 _session_kind varchar(15),
 _utime bigint
) DEFAULT CHARSET utf8;
CREATE INDEX i_o__session_kind ON oidcsessions (_session_kind);
CREATE INDEX i_o__utime ON oidcsessions (_utime);

CREATE TABLE cassessions (
 id varchar(64) not null primary key,
 a_session text,
 _session_kind varchar(15),
 _utime bigint,
 _cas_id varchar(128),
 pgtIou varchar(128)
) DEFAULT CHARSET utf8
CREATE INDEX i_c__session_kind ON cassessions (_session_kind);
CREATE INDEX i_c__utime ON cassessions (_utime);
CREATE INDEX i_c__cas_id ON cassessions (_cas_id);
CREATE INDEX i_c_pgtIou ON cassessions (pgtIou);

LemonLDAP::NG configuration

Go in the Manager and set the session module to Apache::Session::Browseable::PgJSON for each session type you intend to use:

	General parameters » Sessions » Session storage » Apache::Session module

	General parameters » Sessions » Persistent sessions » Apache::Session module

	CAS Service » CAS sessions module name

	OpenID Connect Service » Sessions » Sessions module name

	SAML2 Service » Advanced » SAML sessions module name

Then, set the following module options:

	Required parameters

	
	

	Name

	Comment

	Example

	DataSource

	The DBI [https://metacpan.org/pod/DBI] string

	dbi:mysql:database=lemonldap-ng

	UserName

	The database username

	lemonldapng

	Password

	The database password

	mysuperpassword

	TableName

	Table name (optional)

	sessions

	Index

	Fields to index

	refer to List of fields to index by session type

Browseable LDAP session backend

LemonLDAP::NG configuration

Go in the Manager and set the session module to Apache::Session::Browseable::LDAP for each session type you intend to use:

	General parameters » Sessions » Session storage » Apache::Session module

	General parameters » Sessions » Persistent sessions » Apache::Session module

	CAS Service » CAS sessions module name

	OpenID Connect Service » Sessions » Sessions module name

	SAML2 Service » Advanced » SAML sessions module name

The fill out the corresponding module parameters:

	Required parameters

	
	

	Name

	Comment

	Example

	ldapServer

	URI of the server

	ldap://localhost

	ldapConfBase

	DN of sessions branch

	ou=sessions,dc=example,dc=com

	ldapBindDN

	Connection login

	cn=admin,dc=example,dc=password

	ldapBindPassword

	Connection password

	secret

	Index

	Fields to index

	refer to List of fields to index by session type

	Optional parameters

	
	

	Name

	Comment

	Default value

	ldapObjectClass

	Objectclass of the entry

	applicationProcess

	ldapAttributeId

	Attribute storing session ID

	cn

	ldapAttributeContent

	Attribute storing session content

	description

	ldapAttributeIndex

	Attribute storing index

	ou

	ldapVerify

	Perform certificate validation

	require (use none to disable)

	ldapCAFile

	Path of CA file bundle

	(system CA bundle)

	ldapCAPath

	Perform CA directory

	(system CA bundle)

Redis session backend

Apache::Session::Browseable::Redis [https://metacpan.org/pod/Apache::Session::Browseable::Redis]
is the faster shareable session backend

Setup

Install and launch a Redis server [http://code.google.com/p/redis/].
Install
Apache::Session::Browseable::Redis [https://metacpan.org/pod/Apache::Session::Redis]
Perl module.

In the manager: set
Apache::Session::Browseable::Redis [https://metacpan.org/pod/Apache::Session::Browseable::Redis]
in General parameters » Sessions » Session storage »
Apache::Session module and add the connection parameters for your Redis server(s).

This backend uses the perl bindings for Redis database provided by the Redis perl module [https://metacpan.org/pod/Redis].
A complete list of supported constructor/connection options can be found in the module documentation [https://metacpan.org/pod/Redis].

E.g., Parameters (case sensitive):

	Name

	Comment

	Example

	server

	Redis server @ IP:PORT

	127.0.0.1:6379

	sock

	Redis server @ unix socket

	unix:/path/to/redis.sock

	sentinels

	Redis sentinels list

	127.0.0.1:26379,127.0.0.2:26379,127.0.0.3:26379

	password

	password (== requirepass)

	ChangeMe

	select

	Redis DB

	1

	Index

	Fields to index

	refer to List of fields to index by session type

Security

Restrict network access to the redis server. For remote servers, you can
use SOAP session backend in cunjunction to
increase security for remote server that access through an unsecure
network

REST session backend

Session <type> can be ‘global’ for SSO sessions or ‘persistent’ for
persistent sessions.

LL::NG portal provides REST end points for sessions management:

	GET /sessions/<type>/<session-id> : get session datas

	GET /sessions/<type>/<session-id>/<key> : get a session key value

	GET /sessions/<type>/<session-id>/[k1,k2] : get some session key
value

	POST /sessions/<type> : create a session

	PUT /sessions/<type>/<session-id> : update some keys

	DELETE /sessions/<type>/<session-id> : delete a session

Sessions for connected users (used by LLNG Proxy):

	GET /session/my/<type> : get session datas

	GET /session/my/<type>/key : get session key

	DELETE /session/my : ask for logout

Authorizations for connected users (always enabled):

	GET /mysession/?authorizationfor=<base64-encoded-url>: ask if url is
authorizated

This session backend can be used to share sessions stored in a
non-network backend (like
file session backend) or in a network backend
protected with a firewall that only accepts HTTP flows.

Most of the time, REST session backend is used by Handlers installed on
external servers.

To configure it, REST session backend will be set through Manager in
global configuration (used by all Handlers), and the real session
backend will be configured for local components in lemonldap-ng.ini.

Setup

Manager

First, activate REST in General parameters » Plugins »
Portal servers » REST session server.

Then, set Lemonldap::NG::Common::Apache::Session::REST in
General parameters » Sessions » Session storage »
Apache::Session module and add the following parameters (case
sensitive):

	Required parameters

	Name

	Comment

	Example

	baseUrl

	URL of sessions REST end point

	http://auth.example.com/index.fcgi/sessions/global

	Optional parameters

	Name

	Comment

	Example

	user

	Username to use for auth basic mechanism

	

	password

	Password to use for auth basic mechanism

	

Attention

By default, user password and other secret keys are
hidden by LLNG REST server. You can force REST server to export their
real values by selecting “Export secret attributes in REST” in the
manager. This less secure option is disabled by default.

Apache

Sessions REST end points access must be allowed in Apache portal
configuration (for example, access by IP range):

REST/SOAP functions for sessions access (disabled by default)
<Location /index.fcgi/sessions>
 Require 192.168.2.0/24
</Location>

Real session backend

Real session backend will be configured in lemonldap-ng.ini, in
portal section (the portal hosts the REST service for sessions, and
will do the link between REST requests and real sessions).

For example, if real sessions are stored in
files:

[portal]
globalStorage = Apache::Session::File
globalStorageOptions = { 'Directory' => '/var/lib/lemonldap-ng/sessions/', 'LockDirectory' => '/var/lib/lemonldap-ng/sessions/lock/', }

Tip

Session explorer and “single session” features can’t be used
using this backend. Session explorer and portal must be launched with
real backend.

By default, only few sessions keys are shared by REST
(authenticationLevel, groups, ipAddr, _startTime, _utime, _lastSeen,
_session_id), you need to define which other keys you want to share in
General parameters » Plugins » Portal servers »
SOAP/REST exported attributes.

You must start with + to keep default keys, else they will not be
shared. For example:

+ uid cn mail

To share only the listed attributes:

authenticationLevel groups ipAddr _startTime _utime _lastSeen _session_id uid cn mail

SOAP session backend

LL::NG portal provides SOAP end points for sessions management:

	sessions/: read only access to sessions (enough for distant
Handlers)

	adminSessions/: read/write access to sessions (required for
distant Portal, distant Manager or distant Handlers which modify
sessions)

This session backend can be used to share sessions stored in a
non-network backend (like
file session backend) or in a network backend
protected with a firewall that only accepts HTTP flows.

Most of the time, SOAP session backend is used by Handlers installed on
external servers.

To configure it, SOAP session backend will be set through Manager in
global configuration (used by all Hanlders), and the real session
backend will be configured for local components in lemonldap-ng.ini.

Setup

Manager

First, active SOAP in General parameters » Advanced parameters »
SOAP.

Then, set Lemonldap::NG::Common::Apache::Session::SOAP in
General parameters » Sessions » Session storage »
Apache::Session module and add the following parameters (case
sensitive):

	Required parameters

	Name

	Comment

	Example

	proxy

	URL of sessions SOAP end point

	http://auth.example.com/index.fcgi/sessions

Tip

Use /adminSessions if the Handler need to modify the session,
for example if you configured an idle timeout.

By default, only few sessions keys are shared by SOAP
(authenticationLevel, groups, ipAddr, _startTime, _utime, _lastSeen,
_session_id), you need to define which other keys you want to share in
General parameters » Plugins » Portal servers »
SOAP/REST exported attributes.

You must start with + to keep default keys, else they will not be
shared. For example:

+ uid cn mail

To share only the listed attributes:

_utime _session_id uid cn mail

Apache

Sessions SOAP end points access must be allowed in Apache portal
configuration (for example, access by IP range):

SOAP functions for sessions management (disabled by default)
<Location /index.fcgi/adminSessions>
 Require 192.168.2.0/24
</Location>

SOAP functions for sessions access (disabled by default)
<Location /index.fcgi/sessions>
 Require 192.168.2.0/24
</Location>

Real session backend

Real session backend will be configured in lemonldap-ng.ini, in
portal section (the portal hosts the SOAP service for sessions, and
will do the link between SOAP requests and real sessions).

For example, if real sessions are stored in
files:

[portal]
globalStorage = Apache::Session::File
globalStorageOptions = { 'Directory' => '/var/lib/lemonldap-ng/sessions/', 'LockDirectory' => '/var/lib/lemonldap-ng/sessions/lock/', }

Tip

If your sessions explorer is on the same server that the
portal, either use the adminSessions end point in Manager
configuration, or override the globalStorage and
globalStorageOptions parameters in section all (and not portal) of
lemonldap-ng.ini.

Writing rules and headers

Lemonldap::NG manages applications by their hostname (Apache’s
virtualHosts). Rules are used to protect applications, headers are HTTP
headers added to the request to give datas to the application (for logs,
profiles,…).

Attention

Note that variables designed by $xx correspond to the
name of the exported variables or
macro names except for $ENV{<cgi-header>} which
correspond to CGI header ($ENV{REMOTE_ADDR} for example).

Available $ENV variables

The %ENV table provides:

	all headers in CGI format (User-Agent becomes
HTTP_USER_AGENT)

	some CGI variables depending on the context:

	For portal: all CGI standard variables (you can add custom
headers using fastcgi_param with Nginx),

	For Apache handler: REMOTE_ADDR, QUERY_STRING, REQUEST_URI,
SERVER_PORT, REQUEST_METHOD,

	For Nginx handler: all variables given by fastcgi_param
commands.

	For portal:

	$ENV{urldc} : Origin URL before Handler redirection, in cleartext

	$ENV{_url} : Origin URL before Handler redirection, base64 encoded

See also extended functions.

Rules

A rule associates a regular
expression [http://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions]
to a Perl boolean expression or a keyword.

[image: image0]

Examples:

	Goal

	Regular expression

	Rule

	Restrict /admin/ directory to user bart.simpson

	^/admin/

	

	Restrict /js/ and /css/ directory to authenticated users

	^/(css|js)/

	accept

	Deny access to /config/ directory

	^/config/

	deny

	Do not restrict /public/

	^/public/

	skip

	Do not restrict /skip/ and restrict other to authenticated users

	^/skip/

	$ENV{REQUEST_URI} =~ /skip/ ? skip : 1

	Makes authentication optional, but authenticated users are seen as such (that is, user data are sent to the app through HTTP headers)

	^/forum/

	unprotect

	Restrict access to the whole site to users that have the LDAP description field set to “LDAP administrator” (must be set in exported variables)

	default

	

The “default” access rule is used if no other access rule match the
current URL.

Tip

See the rules examples page for a few
common use cases

Tip

	Comments can be used to order your rules: rules are applied in the
alphabetical order of comment (or regexp in there is no comment). See
security chapter to learn more
about writing good rules.

	See performances to know how
to use macros and groups in rules.

Rules can also be used to intercept logout URL:

	Goal

	Regular expression

	Rule

	Logout user from Lemonldap::NG and redirect it to http://intranet/

	^/index.php?logout

	logout_sso http://intranet/

	Logout user from current application and redirect it to the menu (Apache only)

	^/index.php?logout

	logout_app https://auth.example.com/

	Logout user from current application and from Lemonldap::NG and redirect it to http://intranet/ (Apache only)

	^/index.php?logout

	logout_app_sso http://intranet/

Danger

logout_app and logout_app_sso rules are not
available on Nginx, only on Apache.

By default, user will be redirected on portal if no URL defined, or on
the specified URL if any.

Attention

Only current application is concerned by logout_app*
targets. Be careful with some applications which doesn’t verify
Lemonldap::NG headers after having created their own cookies. If so, you
can redirect users to a HTML page that explain that it is safe to close
browser after disconnect.

Rules based on authentication level

LLNG set an “authentication level” during authentication process. This
level depends on authentication backend used by this user. Default
values are:

	0 for Null

	1 for CAS, old OpenID-2,
Facebook,…

	2 for web-form based authentication (LDAP,
DBI,…)

	3 for Yubikey

	4 for Kerberos

	5 for SSL

There are three ways to impose users a higher authentication level:

	writing a rule based on authentication level:
$authenticationLevel > 3

	since 2.0, set a minimum level in virtual host options (default value
for ALL access rules)

	since 2.0.7, a minimum authentication level can be set for each URI
access rule. Useful if URI are protected by different types of
handler (AuthBasic -> level 2, Main -> level set by authentication
backend).

Tip

Instead of returning a 403 code, “minimum level” returns user
to a form that explain that a higher level is required and propose to
reauthenticate himself.

Headers

Headers are associations between an header name and a perl expression
that returns a string. Headers are used to give user data to the
application.

Examples:

	Goal

	Header name

	Header value

	Give the uid (for accounting)

	Auth-User

	$uid

	Give a static value

	Some-Thing

	“static-value”

	Give display name

	Display-Name

	$givenName.” “.$surName

	Give a non ascii data

	Display-Name

	

As described in
performances chapter, you can
use macros, local macros,…

Attention

	Since many HTTP servers refuse non ascii headers, it is recommended
to use encode_base64() function to transmit those headers

	Don’t forget to add an empty string as second argument to
encode_base64 function to avoid a “newline” characters insertion in
result

	Header names must contain only letters and “-” character.
With Nginx, you can bypass this restriction by using
underscores_in_headers on; directive

Tip

By default, SSO cookie is hidden. So protected applications
cannot retrieve SSO session key. But you can forward this key if
absolutely needed:

Session-ID => $_session_id

Available functions

In addition to macros and name, you can use some functions in rules and
headers:

	LLNG extended functions

	Your custom functions

Wildcards in hostnames

[image: image1] Since 2.0, a wildcard can be used in virtualhost name (not in
aliases !): *.example.com matches all hostnames that belong to
example.com domain. Version 2.0.9 improves this and allows better
wildcards such as test-*.example.com or test-%.example.com. The
% wilcard doesn’t match subdomains.

Even if a wildcard exists, if a virtualhost is explicitly declared, this
rule is applied. Example with precedence order for test.sub.example.com:

	test.sub.example.com

	test%.sub.example.com

	test*.sub.example.com

	%.sub.example.com

	*.sub.example.com

	*.example.com (%.example.com does not match
test.sub.example.com)

Variables

Presentation

Variables can be used in rules and headers. All rules are concerned:

	Access rule in virtual host

	SAML IDP preselection

	Session opening

	…

Variables are stored in the user session. We can distinguish several
kind of variables:

	internal variables, managed by LemonLDAP::NG

	exported variables collected from UserDB backend

	macro and groups

When you know the key of the variable, you just have to prefix it with
the dollar sign to use it, for example to test if uid variable match
coudot :

$uid eq "coudot"

Tip

You can inspect a user session with the sessions explorer (in
Manager)

Below are documented internal variables.

Modules

Register what module was used for authentication, user data, password,
…

	Key

	Description

	_auth

	Authentication module

	_userDB

	User module

	_passwordDB

	Password module

	_issuerDB

	Issuer module (can be multivalued)

	_authChoice

	User choice done if authentication choice was used

	_authMulti

	Full name of authentication module (with #label) used in Multi

	_userDBMulti

	Full name of user module (with #label) used in Multi

Connection

Datas concerning the first connection to the portal

	Key

	Description

	ipAddr

	IP of the user (special care must be taken is you run the portal behind a reverse proxy)

	_timezone

	Timezone of the user, set with javascript from standard login form (will be empty if other authentication methods are used)

	_url

	URL used before being redirected to the portal (empty if portal was used as entry point)

Authentication

Datas around the authentication process.

	Key

	Description

	_session_id

	Session identifier (carried in cookie)

	_user

	User found from login process

	_password

	Password found from login process (only if password store in session is configured)

	authenticationLevel

	Authentication level

Dates

	Key

	Description

	_utime

	Timestamp of session creation

	_startTime

	Date of session creation

	_updateTime

	Date of session last modification

	_lastAuthnUTime

	Timestamp of last authentication time

SAML

Datas related to SAML protocol

	Key

	Description

	_idp

	Name of IDP used for authentication

	_idpConfKey

	Configuration key of IDP used for authentication

	_samlToken

	SAML token

	_lassoSessionDump

	Lasso session dump

	_lassoIdentityDump

	Lasso identity dump

Notifications

	Key

	Description

	_notification_id

	Date of validation of the notification id

Login history

	Key

	Description

	_loginHistory

	HASH of login success and failures

LDAP

Only with UserDB LDAP.

	Key

	Description

	_dn

	Distinguished name

OpenID

	Key

	Description

	_openid_id

	Consent to share attribute id through OpenID

OpenID Connect

	Key

	Description

	_oidc_id_token

	ID Token

	_oidc_OP

	Configuration key of OP used for authentication

	_oidc_access_token

	OAuth2 Access Token used to get UserInfo data

	_oidc_consent_scope_rp

	Scope for which consent was given for RP rp

	_oidc_consent_time_rp

	Time when consent was given for RP rp

Other

	Key

	Description

	_appsListOrder

	Order of categories in the menu

	_session_kind

	Type of session (SSO, Persistent, …)

Protect your application

Presentation

Your application can know the connected user using:

	REMOTE_USER environment variable (with local Handler or SetEnvIf
trick)

	HTTP header (in all cases)

To get more information on user (name, mail, etc.), you have to read
HTTP headers.

Tip

If your application is based on Perl CGI package [http://search.cpan.org/perldoc?CGI], you can simply replace CGI by
Lemonldap::NG::Handler::CGI

Code snippet

Examples with a configured header named
‘Auth-User’:

Perl

print "Connected user: ".$ENV{HTTP_AUTH_USER};

PHP

print "Connected user: ".$_SERVER["HTTP_AUTH_USER"];

Perl auto-protected CGI

LL::NG now uses FastCGI instead of CGI, but you still can write your own
protected CGI.

First create a PSGI module based on Lemonldap::NG::Handler:

package My::PSGI;

use base "Lemonldap::NG::Handler::PSGI"; # or Lemonldap::NG::Handler::PSGI::OAuth2, etc…

sub init {
 my ($self,$args) = @_;
 $self->protection('manager');
 $self->SUPER::init($args) or return 0;
 $self->staticPrefix("/static");
 $self->templateDir("/usr/share/lemonldap-ng/portal/templates");
 # See Lemonldap::NG::Common::PSGI for more
 #...
 # Return a boolean. If false, then error message has to be stored in
 # $self->error
 return 1;
}

sub handler {
 my ($self, $req) = @_;

 # Will be called only if authorisated
 my $userId = $self->userId($req);
 #...

 # Return JSON
 # $self->sendJSONresponse(...);

 # or Return HTML
 $self->sendHtml($req, "myskin/mytemplate", (params => { 'userId' => $userId }));
}

They create a FCGI script like this:

#!/usr/bin/env perl

use My::PSGI;
use Plack::Handler::FCGI;

Plack::Handler::FCGI->new->run(My::PSGI->run());

See our LLNG Nginx/Apache configurations to see how to launch it or read
PSGI/Plack documentation [https://plackperl.org/].

The protection parameter must be set when calling the init() method:

	none: no protection

	authenticate: check authentication but do not manage
authorization

	manager: rely on virtual host configuration in Manager

	rule: xxx: apply a specific rule

Form replay

Presentation

Form replay allows you to open a session on a protected application by
filling a HTML POST login form and autosubmitting it, without asking
anything to the user.

Danger

This kind of SSO mechanism is not clean, and can lead to
problems, like local password blocking, local session not well closed,
etc.

Please always try to find another solution to protect your application
with LL::NG. At least, check if it is not a
known application, or
try to adapt its source code.

If you configure form replay with LL::NG, the Handler will detect forms
to fill, add a javascript in the html page to fill form fields with
dummy datas and submit it, then intercept the POST request and add POST
data in the request body.

POST data can be static values or computed from user’s session.

Tip

To post user’s password, you must enable
password storing. In this case you will be able to
use $_password to fill any password POST field.

Configuration

You should grab some information:

	URI of the html page which contains the form

	URI the html form is sent to

	Does the html page load jQuery ? If not, grab a jQuery URL reachable
by user (any version over jQuery 1.0 is suitable)

	are there several html forms in the page ? If so, get a jQuery
selector for the form you want to post

	is user required to click on a button, for example in order to
perform some script ? If so, get a jQuery selector for that button

	names and values of the fields you want to control

If you don’t know jQuery selector, just be aware that they are similar
to css selectors: for example, button#foo points to the html button
whose id is “foo”, and .bar points to all html elements of css class
“bar”.

For example:

	Form page URI: /login.php

	Target URI: /process.php (if you let this parameter empty, target URI
is supposed to be the same as form page URI)

	jQuery URL:
http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js (if
you let this parameter empty, jQuery is supposed to be already
loaded; you can also set default to point to jQuery URL of LL::NG
portal)

	jQuery form selector: #loginForm (if you let this parameter empty,
browser will fill and submit any html form)

	jQuery button selector: button.validate (if you let this parameter
empty, the form will be submitted but no button will be clicked; if
you set it to “none”, no button will be clicked and the form will be
filled but not submitted)

	Fields:

	postuid: $uid

	postmail: $mail

	poststatic: ‘static’

Go in Manager, “Virtual Hosts” » virtualhost » “Form replay” and click
on “New form replay”.

[image: image0]

Fill values here:

	Form URL: /login.php

	Target URL: /process.php

	jQuery URL:
http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js

	jQuery form selector: #loginForm

	jQuery button selector: button.validate

Then click on New variable and add all data with their values, for
example:

[image: image1]

Tip

You can define more than one form replay URL per virtual
host.

Custom handlers

LLNG provides Perl libraries that can be easily used by inheritance. So
you can write your own handlers but you need first to understand
Handler architecture

Add a new handler type

	Write your new Module (in Lemonldap/NG/Handler/Lib for example) that
overload some Lemonldap::NG::Handler::Main methods

	Write a wrapper in each platform directory (see
Lemonldap::NG::Handler::Apache2::AuthBasic or
Lemonldap::NG::Handler::Server::AuthBasic for examples)

Wrapper usually look at this:

package Lemonldap::NG::Handler::ApacheMP2::MyType;

use base 'Lemonldap::NG::Handler::ApacheMP2::Main', 'Lemonldap::NG::Handler::Lib::MyType';

1;

Enable it

Your wrappers must be named “Lemonldap::NG::Handler::<platform>::<type>”
where <platform> is the target (ApacheMP2 or Server) and <type> is the
name you’ve chosen.

You can enable it either:

	by setting a PerlSetVar VHOSTTYPE <type> in the Apache
configuration file

	by setting a fastcgi_param VHOSTTYPE <type> in the Nginx
configuration file

	by adding it to the menu: add its name in vhostType “select”
declaration (file
lemonldap-ng-manager/lib/Lemonldap/NG/Build/Attributes) and
rebuild LLNG

Note that configuration parameter can be set only in lemonldap-ng.ini
configuration file (section Handler).

Add a new platform

LLNG provides 3 platforms:

	ApacheMP2

	FastCGI server (Nginx is build from there)

	Auto-protected PSGI

If you want to add another, you must write:

	the platform launcher file that launch the required type (see
lemonldap-ng-handler/lib/Lemonldap/NG/Handler/ApacheMP2 file for
example)

	write the main platform file
(Lemonldap::NG::Handler::MyPlatform::Main) that provides required
method (see lemonldap-ng-handler/lib/Lemonldap/NG/Handler/*/Main
for examples) and inherits from Lemonldap::NG::Handler::Main

	write the “type” wrapper files (AuthBasic,…).

Wrapper usually look at this:

package Lemonldap::NG::Handler::MyPlatform::AuthBasic;

use base 'Lemonldap::NG::Handler::MyPlatform::Main', 'Lemonldap::NG::Handler::Lib::AuthBasic';

1;

Old fashion Nginx handlers

Attention

There is no need to use this feature now. It is kept for
compatibility.

Three actions are needed:

	declare your own module in the manager “General Parameters >>
Advanced Parameters >> Custom handlers (Nginx)”. Key is the name that
will be used below and value is the name of the custom package,

	in your Nginx configuration file, add LLTYPE=<name>; in the
location = /lmauth {...} paragraph

	restart FastCGI server(s) (reload is not enough here)

WebServices / API

Presentation

WebServices and API are mostly requested by an application, and not the
end-user itself. In this case, you can not rely on LL::NG standard
Handler to protect the webservice, as it will expect a cookie, which is
not defined in the application requesting the service.

LL::NG offers several solutions to protect this kind of service.

ServiceToken Handler

Two Handlers will be used:

	The frontal Handler that will protect the web application, and will
forge a specific token

	The backend Handler that will protect the web service, and will
consume the token

See ServiceToken Handler documentation.

OAuth2 endpoints

We suppose here that LL::NG is acting as
OpenID Connect provider. The web application
will then be able to get an access token from LL::NG. This token could
be sent to the webservice that can then validate it against LL::NG
OAuth2 endpoints.

UserInfo

You can use the UserInfo endpoint, which requires the access token to
deliver user attributes.

For example:

curl \
 -H "Authorization: Bearer a74d504ec9e784785e70a1da2b95d1d2" \
 https://auth.example.ccom/oauth2/userinfo | json_pp

{
 "family_name" : "OUDOT",
 "name" : "Clément OUDOT",
 "email" : "clement@example.com",
 "sub" : "coudot"
}

Introspection

Introspection endpoint is defined in RFC
7662 [https://tools.ietf.org/html/rfc7662]. It requires an
authentication (same as the authentication for the token endpoint) and
takes to access token as parameter.

For example:

curl \
 -H "Authorization: Basic bGVtb25sZGFwOnNlY3JldA==" \
 -X POST -d "token=a74d504ec9e784785e70a1da2b95d1d2" \
 https://auth.example.com/oauth2/introspect | json_pp

{
 "client_id" : "lemonldap",
 "sub" : "coudot",
 "exp" : 1572446485,
 "active" : true,
 "scope" : "openid profile address email phone"
}

OAuth2 Handler

We also suppose here that LL::NG is acting as
OpenID Connect provider. But the webservice
will be protected by the OAuth2 Handler and will just have to read the
HTTP headers to know which user is connected.

curl \
 -H "Authorization: Bearer a74d504ec9e784785e70a1da2b95d1d2" \
 https://oauth2.example.ccom/rest/myapi

{
 "check" : "true",
 "user" : "coudot"
}

See OAuth2 Handler documentation.

HTTP Basic Authentication

[image: image0]

Presentation

Attention

For now, this feature is only supported by Apache
handler.

Extract from the Wikipedia
article [http://en.wikipedia.org/wiki/Basic_access_authentication]:

In the context of an HTTP transaction, the basic access authentication
is a method designed to allow a web browser, or other client program, to
provide credentials – in the form of a user name and password – when
making a request.

Before transmission, the username and password are encoded as a sequence
of base-64 characters. For example, the user name Aladdin and password
open sesame would be combined as Aladdin:open sesame – which is
equivalent to QWxhZGRpbjpvcGVuIHNlc2FtZQ== when encoded in Base64.
Little effort is required to translate the encoded string back into the
user name and password, and many popular security tools will decode the
strings “on the fly”.

So HTTP Basic Authentication is managed through an HTTP header
(Authorization), that can be forged by LL::NG, with this
precautions:

	Data should not contains accents or special characters, as HTTP
protocol only allow ASCII values in header (but depending on the HTTP
server, you can use ISO encoded values)

	You need to forward the password, which can be the user main password
(if password is stored in session, or any
user attribute (if you keep secondary passwords in users database).

Configuration

The Basic Authentication relies on a specific HTTP header, as described
above. So you have just to declare this header for the virtual host in
Manager.

For example, to forward login ($uid) and password ($_password if
password is stored in session):

Authorization => "Basic ".encode_base64("$uid:$_password", "")

LL::NG provides a special function named
basic to build this header.

So the above example can also be written like this:

Authorization => basic($uid,$_password)

Tip

The basic function will also force conversion from UTF-8
to ISO-8859-1, which should be accepted by most of HTTP servers.

Applications

How to integrate

To integrate a Web application in LL::NG, you have the following
possibilities:

	Protect the application with the Handler, and push user identity
through HTTP headers. This is how main Access Manager products, like
CA SiteMinder, are working. This also how Apache authentication
modules are working, so if your application is compatible with Apache
authentication (often called “external authentifcation”), then you
can use the Handler.

	Specific Handler: some applications can require a specific Handler,
to manage preauthentication process for example.

	CAS: your application is a CAS client, you can configure LL::NG as a
CAS server.

	SAML: your application is a SAML Service Provider, you can configure
LL::NG as a SAML Identity Provider.

	OpenID Connect: your application is a OpenID Connect Relying Party,
you can configure LL::NG as a
OpenID Connect Provider.

If none of above methods is available, you can try:

	HTTP Auth-Basic: replay Auth Basic
authentication

	Form replay: replay form based authentication

Application list

	Application

	Configuration guide

	HTTP headers

	Specific Handler

	CAS

	SAML

	OIDC

	[image: _images/microsoft-adfs.png]

	ADFS

	
	
	
	✔

	

	[image: _images/alfresco_logo.png]

	Alfresco

	✔

	
	
	✔

	

	[image: _images/logo_amazon_web_services.jpg]

	Amazon Web Services

	
	
	
	✔

	

	[image: _images/logo-awx.png]

	AWX (Ansible Tower)

	
	
	
	✔

	

	[image: _images/bigbluebutton-logo.png]

	BigBlueButton

	
	
	
	
	✔

	[image: _images/bugzilla_logo.png]

	Bugzilla

	✔

	
	
	
	

	[image: _images/csod_logo.png]

	Cornerstone

	
	
	
	✔

	

	[image: _images/discourse.jpg]

	Discourse

	
	
	
	✔

	✔

	[image: _images/django_logo.png]

	Django

	✔

	
	
	
	

	[image: _images/dokuwiki_logo.png]

	Dokuwiki

	✔

	
	
	
	

	[image: _images/drupal_logo.png]

	Drupal

	✔

	
	
	
	

	[image: _images/fusiondirectory-logo.jpg]

	FusionDirectory

	✔

	
	
	
	

	[image: _images/gerrit_logo.png]

	Gerrit

	
	
	
	
	✔

	[image: _images/gitlab_logo.png]

	Gitlab

	
	
	
	✔

	✔

	[image: _images/glpi_logo.png]

	GLPI

	✔

	
	
	
	

	[image: _images/googleapps_logo.png]

	Google Apps

	
	
	
	✔

	

	[image: _images/grafana_logo.png]

	Grafana

	
	
	
	
	✔

	[image: _images/grr_logo.png]

	GRR

	✔

	
	
	
	

	[image: _images/guacamole.png]

	Apache Guacamole

	✔

	
	✔

	
	✔

	[image: _images/humhub_logo.png]

	HumHub

	
	
	
	
	✔

	[image: _images/iparapheur_logo.png]

	i-Parapheur

	✔

	
	
	
	

	[image: _images/logo-jitsimeet.png]

	Jitsi Meet

	✔

	
	
	
	

	[image: _images/liferay_logo.png]

	Liferay

	✔

	
	
	
	

	[image: _images/limesurvey_logo.png]

	LimeSurvey

	✔

	
	
	
	

	[image: _images/mattermost_logo.png]

	Mattermost

	
	
	
	
	✔

	[image: _images/mediawiki_logo.png]

	Mediawiki

	✔

	
	
	
	

	[image: _images/mobilizon_logo.jpg]

	Mobilizon

	✔

	
	
	
	

	[image: _images/nextcloud-logo.png]

	NextCloud

	
	
	
	✔

	

	[image: _images/obm_logo.png]

	OBM

	✔

	
	
	
	

	[image: _images/logo_office_365.png]

	Office 365

	
	
	
	✔

	

	[image: _images/logo-publik.png]

	Publik

	
	
	
	
	✔

	[image: _images/phpldapadmin_logo.png]

	phpLDAPAdmin

	✔

	
	
	
	

	[image: _images/roundcube_logo.png]

	Roundcube

	✔

	
	
	
	

	[image: _images/salesforce-logo.jpg]

	SalesForce

	
	
	
	✔

	

	[image: _images/SAPLogo.gif]

	SAP

	✔

	
	
	✔

	

	[image: _images/simplesamlphp_logo.png]

	simpleSAMLphp

	
	
	
	✔

	

	[image: _images/spring_logo.png]

	Spring

	✔

	
	
	
	

	[image: _images/symfony_logo.png]

	Symfony

	✔

	
	
	
	

	[image: _images/sympa_logo.png]

	Sympa

	✔

	
	
	
	

	[image: _images/tomcat_logo.png]

	Tomcat

	✔

	
	
	
	

	[image: _images/wekan-logo.png]

	Wekan

	
	✔

	
	
	

	[image: _images/wiki.js.svg]
	Wiki.js

	
	✔

	
	
	

	[image: _images/wordpress_logo.png]

	Wordpress

	
	
	✔

	
	

	[image: _images/xwiki.png]

	XWiki

	✔

	
	
	
	

	[image: _images/zimbra_logo.png]

	Zimbra

	
	✔

	
	
	

Active Directory Federation Services

[image: image0]

Presentation

Microsoft ADFS (Active Directory Federation Services) is an
Identity/Service Provider, compatible with several protocols, including
SAML 2.0.

Attention

This documentation does not explains how to setup ADFS,
but give only tricks to make it works with LL::NG

ADFS as Identity Provider

When ADFS is declared as an Identity Provider in LemonLDAP::NG, you need
to take care of the following items:

	HTTPS is mandatory on LL::NG portal

	You need to use a certificate in LL::NG SAML metadata instead of a
raw public key

	Activate option Use specific query_string method in SAML Service

	Use SHA1 instead of SHA256 as signature algorithm on ADFS if using a
Lasso version < 2.5.0

	Force SAML response to be sent by POST and not Artifact (signature
verification fails with Artifact)

	Enable Allow proxy authentication in IDP options on LL::NG side

Alfresco

[image: image0]

Presentation

Alfresco [https://www.alfresco.com/] is an ECM/BPM software.

Since 4.0 release, it offers an easy way to configure SSO thanks to
authentication subsystems.

Authentication against LL::NG can be done through:

	HTTP headers (LL::NG Handler)

	SAML 2 (LL::NG as SAML2 IDP)

Tip

Alfresco now recommends SAML2 method

HTTP headers

Alfresco

Tip

The official documentation can be found here:
http://docs.alfresco.com/4.0/tasks/auth-alfrescoexternal-sso.html

You need to find the following files in your Alfresco installation:

	alfresco-global.properties (ex:
tomcat/shared/classes/alfresco-global.properties)

	share-config-custom.xml (ex:
tomcat/shared/classes/alfresco/web-extension/share-config-custom.xml)

The first will allow one to configure SSO for the alfresco webapp, and
the other for the share webapp.

Edit first alfresco-global.properties and add the following:

SSO
authentication.chain=external1:external
external.authentication.enabled=true
external.authentication.defaultAdministratorUserNames=
external.authentication.proxyUserName=
external.authentication.proxyHeader=Auth-User
external.authentication.userIdPattern=

Edit then share-config-custom.xml and uncomment the last part. In
the <endpoint>, change <connector-id> value to
alfrescoHeader and change the <userHeader> value to
Auth-User:

<config evaluator="string-compare" condition="Remote">
 <remote>
 <keystore>
 <path>alfresco/web-extension/alfresco-system.p12</path>
 <type>pkcs12</type>
 <password>alfresco-system</password>
 </keystore>

 <connector>
 <id>alfrescoCookie</id>
 <name>Alfresco Connector</name>
 <description>Connects to an Alfresco instance using cookie-based authentication</description>
 <class>org.alfresco.web.site.servlet.SlingshotAlfrescoConnector</class>
 </connector>

 <connector>
 <id>alfrescoHeader</id>
 <name>Alfresco Connector</name>
 <description>Connects to an Alfresco instance using header and cookie-based authentication</description>
 <class>org.alfresco.web.site.servlet.SlingshotAlfrescoConnector</class>
 <userHeader>Auth-User</userHeader>
 </connector>

 <endpoint>
 <id>alfresco</id>
 <name>Alfresco - user access</name>
 <description>Access to Alfresco Repository WebScripts that require user authentication</description>
 <connector-id>alfrescoHeader</connector-id>
 <endpoint-url>http://localhost:8080/alfresco/s</endpoint-url>
 <identity>user</identity>
 <external-auth>true</external-auth>
 </endpoint>
 </remote>
</config>

You need to restart Tomcat to apply changes.

Danger

Now you can log in with a simple HTTP header. You need to
restrict access to Alfresco to LL::NG.

LL::NG

Headers

Just set the Auth-User header with the attribute that carries the
user login, for example $uid.

Rules

Set the default rule to what you need.

Other rules:

	Unprotect access to some resources: ^/share/res => unprotect

	Catch logout: ^/share/page/dologout => logout_app_sso

SAML2

Alfresco

Install SAML Alfresco module package:

cp alfresco-saml-repo-1.0.1.amp <ALFRESCO_HOME>/amps
cp alfresco-saml-share-1.0.1.amp <ALFRESCO_HOME>/amps_share
./bin/apply_amp.sh

Generate SAML certificate:

keytool -genkeypair -alias my-saml-key -keypass change-me -storepass change-me -keystore my-saml.keystore -storetype JCEKS

Export the keystore:

mv my-saml.keystore alf_data/keystore
cat <<EOT > alf_data/keystore/my-saml.keystore-metadata.properties
aliases=my-saml-key
keystore.password=change-me
my-saml-key.password=change-me
EOT
cat <<EOT >> tomcat/shared/classes/alfresco-global.properties

saml.keystore.location=\${dir.keystore}/my-saml.keystore
saml.keystore.keyMetaData.location=\${dir.keystore}/my-saml.keystore-metadata.properties
EOT

Edit then share-config-custom.xml:

...
 <config evaluator="string-compare" condition="CSRFPolicy" replace="true">

 <!--
 If using https make a CSRFPolicy with replace="true" and override the properties section.
 Note, localhost is there to allow local checks to succeed.

 I.e.
 <properties>
 <token>Alfresco-CSRFToken</token>
 <referer>https://your-domain.com/.*|http://localhost:8080/.*</referer>
 <origin>https://your-domain.com|http://localhost:8080</origin>
 </properties>
 -->

 <filter>

 <!-- SAML SPECIFIC CONFIG - START -->

 <!--
 Since we have added the CSRF filter with filter-mapping of "/*" we will catch all public GET to avoid them
 having to pass through the remaining rules.
 -->
 <rule>
 <request>
 <method>GET</method>
 <path>/res/.*</path>
 </request>
 </rule>

 <!-- Incoming posts from IDPs do not require a token -->
 <rule>
 <request>
 <method>POST</method>
 <path>/page/saml-authnresponse|/page/saml-logoutresponse|/page/saml-logoutrequest</path>
 </request>
 </rule>

 <!-- SAML SPECIFIC CONFIG - STOP -->

 <!-- EVERYTHING BELOW FROM HERE IS COPIED FROM share-security-config.xml -->

 <!--
 Certain webscripts shall not be allowed to be accessed directly form the browser.
 Make sure to throw an error if they are used.
 -->
 <rule>
 <request>
 <path>/proxy/alfresco/remoteadm/.*</path>
 </request>
 <action name="throwError">
 <param name="message">It is not allowed to access this url from your browser</param>
 </action>
 </rule>

 <!--
 Certain Repo webscripts should be allowed to pass without a token since they have no Share knowledge.
 TODO: Refactor the publishing code so that form that is posted to this URL is a Share webscript with the right tokens.
 -->
 <rule>
 <request>
 <method>POST</method>
 <path>/proxy/alfresco/api/publishing/channels/.+</path>
 </request>
 <action name="assertReferer">
 <param name="referer">{referer}</param>
 </action>
 <action name="assertOrigin">
 <param name="origin">{origin}</param>
 </action>
 </rule>

 <!--
 Certain Surf POST requests from the WebScript console must be allowed to pass without a token since
 the Surf WebScript console code can't be dependent on a Share specific filter.
 -->
 <rule>
 <request>
 <method>POST</method>
 <path>/page/caches/dependency/clear|/page/index|/page/surfBugStatus|/page/modules/deploy|/page/modules/module|/page/api/javascript/debugger|/page/console</path>
 </request>
 <action name="assertReferer">
 <param name="referer">{referer}</param>
 </action>
 <action name="assertOrigin">
 <param name="origin">{origin}</param>
 </action>
 </rule>

 <!-- Certain Share POST requests does NOT require a token -->
 <rule>
 <request>
 <method>POST</method>
 <path>/page/dologin(\?.+)?|/page/site/[^/]+/start-workflow|/page/start-workflow|/page/context/[^/]+/start-workflow</path>
 </request>
 <action name="assertReferer">
 <param name="referer">{referer}</param>
 </action>
 <action name="assertOrigin">
 <param name="origin">{origin}</param>
 </action>
 </rule>

 <!-- Assert logout is done from a valid domain, if so clear the token when logging out -->
 <rule>
 <request>
 <method>POST</method>
 <path>/page/dologout(\?.+)?</path>
 </request>
 <action name="assertReferer">
 <param name="referer">{referer}</param>
 </action>
 <action name="assertOrigin">
 <param name="origin">{origin}</param>
 </action>
 <action name="clearToken">
 <param name="session">{token}</param>
 <param name="cookie">{token}</param>
 </action>
 </rule>

 <!-- Make sure the first token is generated -->
 <rule>
 <request>
 <session>
 <attribute name="_alf_USER_ID">.+</attribute>
 <attribute name="{token}"/>
 <!-- empty attribute element indicates null, meaning the token has not yet been set -->
 </session>
 </request>
 <action name="generateToken">
 <param name="session">{token}</param>
 <param name="cookie">{token}</param>
 </action>
 </rule>

 <!-- Refresh token on new "page" visit when a user is logged in -->
 <rule>
 <request>
 <method>GET</method>
 <path>/page/.*</path>
 <session>
 <attribute name="_alf_USER_ID">.+</attribute>
 <attribute name="{token}">.+</attribute>
 </session>
 </request>
 <action name="generateToken">
 <param name="session">{token}</param>
 <param name="cookie">{token}</param>
 </action>
 </rule>

 <!--
 Verify multipart requests from logged in users contain the token as a parameter
 and also correct referer & origin header if available
 -->
 <rule>
 <request>
 <method>POST</method>
 <header name="Content-Type">multipart/.+</header>
 <session>
 <attribute name="_alf_USER_ID">.+</attribute>
 </session>
 </request>
 <action name="assertToken">
 <param name="session">{token}</param>
 <param name="parameter">{token}</param>
 </action>
 <action name="assertReferer">
 <param name="referer">{referer}</param>
 </action>
 <action name="assertOrigin">
 <param name="origin">{origin}</param>
 </action>
 </rule>

 <!--
 Verify that all remaining state changing requests from logged in users' requests contains a token in the
 header and correct referer & origin headers if available. We "catch" all content types since just setting it to
 "application/json.*" since a webscript that doesn't require a json request body otherwise would be
 successfully executed using i.e."text/plain".
 -->
 <rule>
 <request>
 <method>POST|PUT|DELETE</method>
 <session>
 <attribute name="_alf_USER_ID">.+</attribute>
 </session>
 </request>
 <action name="assertToken">
 <param name="session">{token}</param>
 <param name="header">{token}</param>
 </action>
 <action name="assertReferer">
 <param name="referer">{referer}</param>
 </action>
 <action name="assertOrigin">
 <param name="origin">{origin}</param>
 </action>
 </rule>
 </filter>
 </config>
...

Configure SAML service provider using the Alfresco admin console
(/alfresco/s/enterprise/admin/admin-saml).

Set the following parameters:

	Enable SAML Authentication (SSO): on

	Authentication service URL:
https://auth.example.com/saml/singleSignOn

	Single Logout URL: https://auth.example.com/saml/singleLogout

	Single logout return URL:
https://auth.example.com/saml/singleLogoutReturn

	Entity identification: http://alfresco.myecm.org:8080/share

	User ID mapping: Subject/NameID

To finish with Alfresco configuration, tick the “Enable SAML
authentication (SSO)” box.

LL::NG

Configure SAML service and set a certificate as signature public key in
metadata.

Export Alfresco SAML Metadata from admin console and import them in
LL::NG.

In the authentication response option, set:

	Default NameID Format: Unspecified

	Force NameID session key: uid

And you can define these exported attributes:

	GivenName

	Surname

	Email

Other resources

	DevCon 2012: Unlocking the Secrets of Alfresco Authentication, Mehdi
Belmekki [https://www.youtube.com/watch?v=5tS0XrC_-rw]

	Setting up Alfresco SAML authentication with
LemonLDAP::NG [https://community.alfresco.com/blogs/alfresco-premier-services/2017/08/03/setting-up-alfresco-saml-authentication-lemonldapng]

Amazon Web Services

Amazon Web Services [https://aws.amazon.com] allows one to delegate
authentication through SAML2.

SAML

	Make sure you have followed the steps
here [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_enable-console-saml.html].

	Go to https://your.portal.com/saml/metadata and save the resulting
file locally.

	In each AWS account, go to IAM -> Identity providers -> Create
Provider.

	Select SAML as the provider type

	Choose a name (best if kept consistent between accounts), and then
choose the metadata file you saved above.

	Looking again at the links on the left side of the page, go to Roles
-> Create role

	Choose SAML / Saml 2.0 federation

	Select the provider you just configured, click
Allow programmatic and AWSManagement Console access which will
fill in the rest of the form for you, then click next.

	Set whatever permissions you need to and then click Review.

	Choose a name for the role. These will shown to people when they log
in, so make them descriptive. We have different accounts for
different regions of the world, so I put the region into the role
name so people know which account is which.

Attention

If you have only one role, the configuration is simple. If you
have multiple roles for different people, it is a little trickier. As
you will see, the SAML attributes are not dynamic, so you have to set
them in the session when a user logs in or use a custom function. In
this example, I wanted to avoid managing custom functions on all the
servers, so the SAML attributes are set in the session. We also use LDAP
for user information, so I will describe that. In our LDAP tree, each
user has attributes which are used quite heavily for dynamic groups and
authorisation. You will want something similar, using whatever attribute
makes sense to you. For example:

dn: uid=user,ou=people,dc=your,dc=com
...
ou: sysadmin
ou: database
ou: root

	Assuming you use the web interface to manage lemonldap, go to General
Parameters -> Authentication parameters -> LDAP parameters ->
Exported variables. Here set the key to the LDAP attribute and the
value to something sensible. I keep them the same to make it easy.

	Now go to *Variables -> Macros*. Here set up variables which will be
computed based on the attributes you exported above. You will need to
emit strings in this format
arn:aws:iam::account-number:role/role-name1,arn:aws:iam::account-number:saml-provider/provider-name.
The parts you need to change are account-number, role-name1
and provier-name. The last two will be the provider name and role
names you just set up in AWS.

	Perl works in here, so something like this is valid: aws_eu_role
-> $ou =~ sysadmin ? "arn:aws..." : "arn:..."

	If it easier, split multiple roles into different macros. Then tie
all the variables you define together into one string concatenating
them with whatever is in General Parameters -> Advanced Parameters ->
Separator. Actually click into this field and move around with the
arrow keys to see if there is a space, since spaces can be part of
the separator.

	Remember macros are defined alphanumerically, so you want one right
at the end, like z_aws_roles ->
join("; ", $role_name1, $role_name2, ...)

	On the left again, click SAML service providers, then
Add SAML SP.

	Enter a name, click ok, then select it on the left. Select
Metadata, then enter
`https://signin.aws.amazon.com/static/saml-metadata.xml` in the
URL field, then click load.

	Click Exported attributes on the left, then Add attribute
twice to add two attributes. The first field is the name of a
variable set in the user’s session:

	_whatToTrace ->
https://aws.amazon.com/SAML/Attributes/RoleSessionName (leave
the rest)

	z_aws_roles (the macro name you defined above) ->
https://aws.amazon.com/SAML/Attributes/Role (leave the rest)

	On the left, select Options -> Security -> Enable use of IDP
initiated URL -> On

	Select General Parameters -> Portal -> Menu -> Categories and
applications

	Select a category or create a new one if you need to. Then click
New application.

	Enter a name etc. For the URL, use
https://your.portal.com/saml/singleSignOn?IDPInitiated=1&sp=urn:amazon:webservices

	Display application should be set to Enabled

	Go to your portal, click on the link, and check that it works!

AWX (Ansible Tower)

[image: logo-awx.png] [image: logo-ansibletower.png]

Presentation

AWX [https://github.com/ansible/awx] is the upstream version for
Ansible Tower.

This documentation explains how to interconnect LemonLDAP::NG and AWX
using SAML 2.0 protocol.

You can find the Official AWX documentation about this topic here :
https://docs.ansible.com/ansible-tower/latest/html/administration/ent_auth.html#saml-authentication-settings
Please read it before the LLNG doc.

Configuration

This page assumes you already have configured the SAML Service in
LemonLDAP::NG, if not please follow :
SAML service configuration

AWX SAML Key & Certificate

You’ll need a private key and the corresponding certificate to setup
saml in AWX, you can do it with your pki or with openssl on your machine
:

openssl req -x509 -newkey rsa:4096 -keyout saml-awx.key -out saml-awx.crt -days 3650 -nodes

LLNG SAML Certificate

AWX need a certificate for the IDP signature, a public key won’t work.
You can either just generate a certificate from the private key and put
it in AWX conf, or you can do it globally.

Generate Certificate from Key

You can find your private key in : SAML2 Service -> Security Parameters
-> Signature -> Private Key

Copy it somewhere secure as lemonldap.key, and then generate the
certificate with this command :

openssl req -new -x509 -days 3650 -key lemonldap.key > lemonldap.crt

After that, if you want, you can replace your SAML public key with this
certificate in LLNG configuration, this is not mandatory.

AWX

You’ll need an administrator account, then go to Settings ->
Authentication -> SAML

[image: image2]

There is a few settings :

SAML Service Provider Entity ID

This is the entityID for awx, lets put the fqdn : awx.example.com

SAML Service Provider Public Certificate

Put the content of saml-awx.crt

-----BEGIN CERTIFICATE-----
cert
-----END CERTIFICATE-----

SAML Service Provider Private Key

Put the content of saml-awx.key

-----BEGIN RSA PRIVATE KEY-----
key
-----END RSA PRIVATE KEY-----

It will be replaced with $encrypted$ after you save the settings.

SAML Service Provider Organization Info

Organization Info for The SP, this is purely “for looks”

{
 "en-US": {
 "displayname": "AWX ACME",
 "url": "https://awx.example.com",
 "name": "awxacme"
 }
}

SAML Service Provider Technical Contact

Technical Contact for the SP

{
 "emailAddress": "support@example.com",
 "givenName": "Support ACME"
}

SAML Service Provider Support Contact

Support Contact for the SP

{
 "emailAddress": "support@example.com",
 "givenName": "Support ACME"
}

SAML Enabled Identity Providers

This is the configuration of the IdP :

{
 "lemonldap": {
 "attr_last_name": "sn",
 "x509cert": "SOXGp.....",
 "attr_username": "uid",
 "entity_id": "https://auth.example.com/saml/metadata",
 "attr_first_name": "givenName",
 "attr_email": "mail",
 "attr_user_permanent_id": "uid",
 "url": "https://auth.example.com/saml/singleSignOn"
 }
}

	“attr_last_name”: “sn” SAML Attribute for the user last name

	“x509cert”: “SOXGp…..” the content of lemonldap.crt generated
in the “LLNG SAML Certificate” section

	“attr_username”: “uid” SAML Attribute for the user username

	“entity_id”: “https://auth.example.com/saml/metadata” entityID of the
IdP

	“attr_first_name”: “givenName” SAML Attribute for the user first name

	“attr_email”: “mail” SAML Attribute user for the user email

	“attr_user_permanent_id”: “uid” SAML Attribute for the user unique id
inside AWX

	“url”: “https://auth.example.com/saml/singleSignOn” SAML SSO Url

SAML Security Config

{
 "requestedAuthnContext": false,
 "authnRequestsSigned": true
}

Save your configuration.

LemonLDAP:NG

We now have to define a service provider in LL:NG.

Go to “SAML service providers”, click on “Add SAML SP” and name it as
you want (example : ‘AWX’)

In the new subtree ‘AWX’, open ‘Metadata’ and paste the content of the
AWX Metadatas, wich can be found at the
SAML Service Provider Metadata URL in AWX :
https://awx.example.com/sso/metadata/saml/

[image: image3]

Now go in “Exported attributes” and add, the ‘uid’, ‘sn’, ‘givenName’,
‘mail’.

All four attributes are mandatory for AWX. Make sure they match the
names of the attributes available in your LemonLDAP sessions.

[image: image4]

Don’t forget to save your configuration.

You are now good to go, and you can add the application in
your menu and
your virtual hosts.

You should now have a SAML button on the login page :

[image: image5]

Bugzilla

[image: image0]

Presentation

Bugzilla [http://www.bugzilla.org] is server software designed to
help you manage software development.

Bugzilla can authenticate a user with HTTP headers, and auto-create its
account with a few information:

	User ID

	Email

	Real name

Configuration

Bugzilla administration

In Bugzilla administration interface, go in Parameters »
User authentication

Then set:

	auth_env_id: HTTP_AUTH_USER

	auth_env_email: HTTP_AUTH_MAIL

	auth_env_realname: HTTP_AUTH_CN

	user_info_class: Env or Env,CGI

Bugzilla virtual host

Configure Bugzilla virtual host like other
protected virtual host.

	For Apache:

<VirtualHost *:80>
 ServerName bugzilla.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name bugzilla.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Bugzilla virtual host in Manager

Go to the Manager and create a new virtual host
for Bugzilla.

Configure the rules.

Configure the following header.

	Auth-User: $uid

	Auth-Mail: $mail

	Auth-Cn: $cn

BigBlueButton

[image: logo]

Presentation

BigBlueButton [https://bigbluebutton.org/] is a web conferencing system
designed for online learning. It offers audio/video sharing, presentations with
extended whiteboard capabilities - such as a pointer, zooming and drawing -
public and private chat, breakout rooms, screen sharing, integrated VoIP using
FreeSWITCH, and support for presentation of PDF documents and Microsoft Office
documents.

Its user-facing interface, Greenlight, can be configured to authenticate users with OpenID Connect since version 2.7.17.

Configuration

LL:NG

Make sure you have already
enabled OpenID Connect on your LemonLDAP::NG
server

Make sure you have generated a set of signing keys in
OpenID Connect Service » Security » Keys

You also need to set a Signing key ID to a non-empty value of your choice.

Then, add a Relaying Party with the following configuration

	Options » Authentification » Client ID : choose a client ID, such as my_client_id

	Options » Authentification » Client Secret : choose a client secret, such as my_client_secret

	Options » Allowed redirection address : https://my_greenlight_server/b/auth/openid_connect/callback

	Options » ID Token Signature Algorithm : RS256

	Adjust your Exported Attributes to send the correct session variables in the email and name claims.

Greenlight

Configure the following environment variables in your greenlight .env file

OPENID_CONNECT_CLIENT_ID=my_client_id
OPENID_CONNECT_CLIENT_SECRET=my_client_secret
OPENID_CONNECT_ISSUER=https://auth.example.com
OPENID_CONNECT_UID_FIELD=sub
OAUTH2_REDIRECT=https://my_greenlight_server/b/

Notes

	Your ID Token Signature Algorithm has to be RSxxx, symmetric algorithms seem broken as of Greenlight 2.7.17

	OAUTH2_REDIRECT must match the URL you use to access Greenlight. the
auth/openid_connect/callback suffix must be omitted

	Greenlight requires your LemonLDAP::NG server to be served over HTTPS using a publically recognized certificate authority (such as Let’s Encrypt)

Cornerstone On Demand

[image: image0]

Presentation

CornerStone On Demand (CSOD) [http://www.cornerstoneondemand.com/]
allows one to use SAML to authenticate users. It works by default with
IDP intiated mechanism, but can works with the standard SP initiated
cinematic.

To work with LL::NG it requires:

	An enterprise account

	LL::NG configured as SAML Identity Provider

	Registered users on CSOD with the same email than those used by
LL::NG (email will be the NameID exchanged between CSOD and LL::NG)

Configuration

New Service Provider

You should have configured LL::NG as an
SAML Identity Provider,

Now we will add CSOD as a new SAML Service Provider:

	In Manager, click on SAML service providers and the button
New service provider.

	Set csod as Service Provider name.

	Set Email in Options » Authentication Response »
Default NameID format

	Select Metadata, and unprotect the field to paste the following
value:

<md:EntityDescriptor entityID="mycompanyid.csod.com" xmlns="urn:oasis:names:tc:SAML:2.0:metadata" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
Base64 encoded CSOD certificate
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 <AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="https://mycompanyid.csod.com/samldefault.aspx" index="1" />
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</NameIDFormat>
 </SPSSODescriptor>
</md:EntityDescriptor>

Attention

Change mycompanyid (in AssertionConsumerService
markup, parameter Location) into your CSOD company ID and put the
certificate value inside the ds:X509Certificate markup

CSOD control panel

CSOD needs two things to configure LL::NG as an IDP:

	Certificate

	SAML assertion

Certificate

See SAML security parameters to know how generate
a certificate from you SAML private key.

SAML assertion

You need to use the IDP initiated feature of LL::NG. Just call this URL:

https://auth.example.com/saml/singleSignOn?IDPInitiated=1&sp=mycompanyid.csod.com

Discourse

[image: discourse.jpg]

Presentation

Discourse [https://www.discourse.org/] is a conversation-oriented
forum engine

Discourse supports its own Single-Sign-On
scheme [https://meta.discourse.org/t/official-single-sign-on-for-discourse-sso/13045]
but is also compatible with standard protocols such as SAML and OpenID
Connect, through plugins.

This documentation illustrates the OpenID Connect plugin.

First, make sure you have set up LemonLDAP::NG ‘s
OpenID Connect service and added
a Relaying Party for your Discourse instance

Discourse can use the following OpenID Connect attributes to fill the
user’s profile:

* name
* email
* given_name
* family_name
* preferred_username
* picture

Make sure you create a username and password for the Relying Party, and
that the discourse callback URL is allowed :
https://discourse.example.com/auth/oidc/callback

Discourse configuration

Plugin installation

Install the Discourse OpenID Connect
Plugin [https://meta.discourse.org/t/openid-connect-authentication-plugin/103632]
according to these instructions

Plugin configuration

Browse to your Discourse admin interface, and to the plugin settings

	openid_connect_enabled: Yes

	openid_connect_discovery_document:
https://auth.example.com/.well-known/openid-configuration

	openid_connect_client_id: Client ID you chose when configuring the
Relying Party

	openid_connect_client_secret: Client Secret you chose when
configuring the Relying Party

	openid_connect_authorize_scope: openid email profile

Django

Presentation

Django [https://www.djangoproject.com/] is a high-level Python Web
framework that encourages rapid development and clean, pragmatic design.

Connector

The Django connector is available on GitHub:
https://github.com/rclsilver/django-lemonldap

See the README to know how install and configure it.

Dokuwiki

[image: image0]

Presentation

DokuWiki [http://www.dokuwiki.org/] is a standards compliant, simple
to use Wiki, mainly aimed at creating documentation of any kind. It is
targeted at developer teams, workgroups and small companies. It has a
simple but powerful syntax which makes sure the data files remain
readable outside the Wiki and eases the creation of structured texts.
All data is stored in plain text files – no database is required.

HTTP headers

You need to install a Dokuwiki plugin, available on Dokuwiki plugins
registry [https://www.dokuwiki.org/plugins]:
https://www.dokuwiki.org/plugin:authlemonldap

Plugin installation

Install the plugin using the Plugin
Manager [https://www.dokuwiki.org/plugin:plugin].

Dokuwiki configuration

As administrator, go in Dokuwiki parameters and set:

	Authentication backend: authlemonldap

	Manager: set which users and/or groups will be admin

[image: image1]

Dokuwiki virtual host

Configure Dokuwiki virtual host like other
protected virtual host.

	For Apache:

<VirtualHost *:80>
 ServerName dokuwiki.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name dokuwiki.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Dokuwiki virtual host in Manager

Go to the Manager and create a new virtual host
for Dokuwiki.

Configure the access rules.

Configure the headers:

	Auth-User $uid

	Auth-Cn: $cn

	Auth-Mail: $mail

	Auth-Groups: encode_base64($groups,””)

Attention

To allow execution of encode_base64() method, you must
deactivate the Safe jail.

Drupal

[image: image0]

Presentation

Drupal [http://drupal.org] is a CMS written in PHP. It can works
with external modules to extends its functionalities. One of this module
can be used to delegate authentication server to the web server:
Webserver Auth [http://drupal.org/project/Webserver_auth].

Installation

Install Webserver Auth [http://drupal.org/project/Webserver_auth]
module, by downloading it, and unarchive it in the drupal modules/
directory.

Configuration

Drupal module activation

Go on Drupal administration interface and enable the Webserver Auth
module.

Drupal virtual host

Configure Drupal virtual host like other
protected virtual host.

Attention

If you are protecting Drupal with LL::NG as reverse
proxy,
convert header into REMOTE_USER environment variable.

	For Apache:

<VirtualHost *:80>
 ServerName drupal.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name drupal.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Drupal virtual host in Manager

Go to the Manager and create a new virtual host
for Drupal.

Just configure the access rules.

If using LL::NG as reverse proxy, configure the Auth-User
header, else no headers are needed.

Protect only the administration pages

With the above solution, all the Drupal site will be protected, so no
anonymous access will be allowed.

Attention

You cannot use the unprotect rule because Drupal
navigation is based on query strings (?q=admin, ?q=user, etc.), and
unprotect rule only works on URL patterns.

You can create a special virtual host and use Apache rewrite
module [http://httpd.apache.org/docs/current/mod/mod_rewrite.html] to
switch between open and protected hosts:

<VirtualHost *:80>
 ServerName drupal.example.com

 # DocumentRoot
 DocumentRoot /var/www/html/drupal/
 DirectoryIndex index.php

 # Redirect admin pages
 RewriteEngine On
 RewriteCond %{QUERY_STRING} q=(admin|user)
 RewriteRule ^/(.*)$ http://admindrupal.example.com/$1 [R]

 LogLevel warn
 ErrorLog /var/log/httpd/drupal-error.log
 CustomLog /var/log/httpd/drupal-access.log combined
</VirtualHost>
<VirtualHost *:80>
 ServerName admindrupal.example.com

 # SSO protection
 PerlHeaderParserHandler Lemonldap::NG::Handler

 # DocumentRoot
 DocumentRoot /var/www/html/drupal/
 DirectoryIndex index.php

 LogLevel warn
 ErrorLog /var/log/httpd/admindrupal-error.log
 CustomLog /var/log/httpd/admindrupal-access.log combined
</VirtualHost>

FusionDirectory

[image: image0]

Presentation

FusionDirectory [https://www.fusiondirectory.org/] provides a
solution to daily management of data stored in an LDAP directory.

Configuration

FusionDirectory

Go in Configuration and in Login and Session panel. Set:

	HTTP Header authentication: Activate

	Header name: Auth-User

See also
https://documentation.fusiondirectory.org/en/documentation/admin_installation/core_configuration#login-and-session

LL::NG

Just set the Auth-User header with the attribute that carries the
user login, for example $uid.

Gerrit

[image: image0]

Presentation

Gerrit [https://www.gerritcodereview.com/] allows to review commits before they are integrated into a target branch.

With the OAuth2 provider plugin [https://gerrit.googlesource.com/plugins/oauth/] Gerrit can use OAuth2 protocol for authentication.

Configuration

Gerrit

Install [https://gerrit-review.googlesource.com/Documentation/config-plugins.html#installation] the OAuth Provider plugin. A prebuilt package of the plugin can be found on the Gerrit CI [https://gerrit-ci.gerritforge.com/job/plugin-oauth-bazel-master-master/lastSuccessfulBuild/artifact/bazel-bin/plugins/oauth/oauth.jar].

Then, configure Gerrit:

In /var/gerrit/etc/gerrit.config

...
[auth]
 type = OAUTH
 gitBasicAuthPolicy = HTTP
...
[plugin "gerrit-oauth-provider-lemonldap-oauth"]
 root-url = https://auth.<LLNG_SERVER>
 client-id = <GERRIT_CLIENT_ID>

In /var/gerrit/etc/secret.config

...
[plugin "gerrit-oauth-provider-lemonldap-oauth"]
 client-secret = <GERRIT_CLIENT_SECRET>

LL::NG

Add an Open ID Connect Relying Party for Gerrit

Exported attributes (the values must fit your LDAP schema)
lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataExportedVars/gerrit preferred_username uid \
 oidcRPMetaDataExportedVars/gerrit name cn \
 oidcRPMetaDataExportedVars/gerrit email mail \
 oidcRPMetaDataExportedVars/gerrit sub email

Options > Basic > Allowed redirection addresses for login
> Logout > Allowed redirection addresses for logout
lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsRedirectUris 'http://<GERRIT_SERVER>/oauth' \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsPostLogoutRedirectUris 'https://<GERRIT_SERVER>/'

Options > Basic > Client ID
> Basic > Client Secret
lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsClientID '<GERRIT_OAUTH_ID>' \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsClientSecret '<GERRIT_OAUTH_SECRET>'

Timeout > ID Token expiration
> Access Token expiration
Security > ID Token signature algorithm
lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsIDTokenExpiration 3600 \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsAccessTokenExpiration 3600 \
 oidcRPMetaDataOptions/gerrit oidcRPMetaDataOptionsIDTokenSignAlg RS512

Gitlab

[image: image0]

Presentation

See Gitlab [https://about.gitlab.com/] page for product
presentation.

Gitlab allows one to use SAML to authenticate users, see official
documentation [https://docs.gitlab.com/ee/integration/saml.html]

SAML

For this example, we use these sample values:

	Gitlab URL : https://gitlab.example.com

	LL::NG portal URL : https://auth.example.com

Gitlab configuration

Find the gitlab.rb file and add these settings:

vi /etc/gitlab/gitlab.rb

gitlab_rails['omniauth_enabled'] = true
gitlab_rails['omniauth_allow_single_sign_on'] = ['saml']
gitlab_rails['omniauth_auto_link_saml_user'] = true
gitlab_rails['omniauth_block_auto_created_users'] = false

gitlab_rails['omniauth_providers'] = [
 {
 name: 'saml',
 args: {
 assertion_consumer_service_url: 'https://gitlab.example.com/users/auth/saml/callback',
 idp_cert_fingerprint: '99:BE:7B:68:3F:XX:7D:EF:6B:C3:XX:C0:0E:XX:D4:EA:02:XX:83:2A',
 idp_sso_target_url: 'https://auth.example.com/saml/singleSignOn',
 issuer: 'https://gitlab.example.com',
 name_identifier_format: 'urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress'
 },
 label: 'Login with LL::NG' # optional label for SAML login button
 }
]

Tip

To get the fingerprint of IDP certificate, copy SAML
certificate from LL::NG configuration in a file and use openssl:

openssl x509 -in CERT.pem -noout -fingerprint

You can force SAML by default with this option:

gitlab_rails['omniauth_auto_sign_in_with_provider'] = 'saml'

In this case, users won’t be able to log directly on gitlab. Set it once
you are sure the SAML configuration is valid.

To apply changes:

gitlab-ctl reconfigure

LL::NG configuration

We suppose LL::NG is configured as SAML IDP, and that you converted the
public key into a certificate for SAML signature. You must enable the
option to send certificates in response. If you don’t want to, you need
to copy the certificate value into Gitlab configuration, in `idp_cert`
parameter.

You can get Gitlab SAML metadata on
https://gitlab.example.com/users/auth/saml/metadata

Register them in LL::NG and send these SAML attributes:

	mail => email

	uid => uid

	cn => name

Attention

The value from LL::NG mail session attribute must be the
email of the user in Gitlab database, in order to associate
accounts.

Manage groups

You can pass groups to Gitlab. For this, declare groups attribute in
gitlab.rb:

...
gitlab_rails['omniauth_providers'] = [
 {
 name: 'saml',
 groups_attribute: 'groups',
...

And in LL::NG, export the groups attribute:

	groups => groups

OpenID Connect

Alternatively to SAML, you can choose to configure Gitlab to use
OpenID Connect.

Gitlab configuration

In /etc/gitlab/gitlab.rb

...
gitlab_rails['omniauth_allow_single_sign_on'] = ['openid_connect']
gitlab_rails['omniauth_block_auto_created_users'] = false

gitlab_rails['omniauth_providers'] = [
 { 'name' => 'openid_connect',
 'label' => 'LemonLDAP::NG',
 'args' => {
 'name' => 'openid_connect',
 'issuer' => 'https://auth.example.com',
 'scope' => ['openid', 'profile', 'email'],
 'response_type' => 'code',
 'client_auth_method' => 'client_secret_post',
 'discovery' => true,
 'uid_field' => 'sub',
 'client_options' => {
 'redirect_uri' => 'http://gitlab.example.com/users/auth/openid_connect/callback',
 'identifier' => 'LEMONLDAP_CLIENT_ID',
 'secret' => 'LEMONLDAP_CLIENT_SECRET',
 }
 }
 }
];

...

LL::NG configuration

Add an OpenID Connect RP to LemonLDAP::NG

	Chose a client ID and a client secret, and write the same values in
the gitlab.rb file above

	You need to chose an asymetrical signature algorithm for the ID Token
(RS256 or above)

	You also need to set a key identifier on your LemonLDAP::NG server in
OpenID Connect service » Security » Signing key ID (use
something like default as the value).

	Make sure the attribute containing the user email in the
LemonLDAP::NG session is mapped to the email claim.

Attention

You need to set a key identifier, or you will get a
JSON::JWK::Set::KidNotFound error on Gitlab

GLPI

[image: image0]

Presentation

GLPI [http://www.glpi-project.org] is the Information
Resource-Manager with an additional Administration- Interface. You can
use it to build up a database with an inventory for your company
(computer, software, printers…). It has enhanced functions to make the
daily life for the administrators easier, like a job-tracking-system
with mail-notification and methods to build a database with basic
information about your network-topology.

Configuration

For GLPI >= 0.71, it is a simple configuration in GLPI: Setup →
Authentication. In “External authentications” click “Others” and in
“Field holding the login in the _SERVER array” select “REMOTE_USER”

For older version, check
http://wiki.glpi-project.org/doku.php?id=en:authautoad

If you use Nginx, you need to add this in configuration:

proxy_set_header Host $http_host;
proxy_set_header X-Forwarded-Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

Google Apps

[image: image0]

Presentation

Google Apps [http://www.google.com/apps/] can use SAML to
authenticate users, behaving as an SAML service provider, as explained
here [http://code.google.com/googleapps/domain/sso/saml_reference_implementation.html].

To work with LL::NG it requires:

	An enterprise Google Apps
account [http://www.google.com/apps/intl/en/business/index.html]

	LL::NG configured as SAML Identity Provider

	Registered users on Google Apps with the same email than those used
by LL::NG (email will be the NameID exchanged between Google Apps and
LL::NG)

Configuration

Google Apps control panel

Attention

This part is based on SimpleSAMLPHP
documentation [http://simplesamlphp.org/docs/1.6/simplesamlphp-googleapps].

As administrator, go in Google Apps control panel and click on Advanced
tools:

[image: image1]

Then select Set up single sign-on (SSO):

[image: image2]

Now configure all SAML parameters:

[image: image3]

	Enable Single Sign-On: check the box. Uncheck it to disable SAML
authentication (for example, if your Identity Provider is down).

	Sign-in page URL: SSO access point (HTTP-Redirect binding).
Example: http://auth.example.com/saml/singleSignOn

	Sign-out page URL: this in not the SLO access point (Google Apps
does not support SLO), but the main logout page. Example:
http://auth.example.com/?logout=1

	Change password URL: where users can change their password.
Example: http://auth.example.com

Attention

You must check the option
Use a specific domain transmitter to force Google Apps to send the
full entityId.

Certificate

For the certificate, you can build it from the signing private key
registered in Manager. Select the key, and export it (button
Download). This will download the public and the private key.

Keep the private key in a file, for example lemonldap-ng-priv.key, then
use openssl to generate an auto-signed certificate:

openssl req -new -key lemonldap-ng-priv.key -out cert.csr
openssl x509 -req -days 3650 -in cert.csr -signkey lemonldap-ng-priv.key -out cert.pem

You can now the upload the certificate (cert.pem) on Google Apps.

Tip

You can also use the certificate instead of public key in SAML
metadata, see SAML service configuration

New Service Provider

You should have configured LL::NG as an
SAML Identity Provider,

Now we will add Google Apps as a new SAML Service Provider:

	In Manager, click on SAML service providers and the button
New service provider.

	Set GoogleApps as Service Provider name.

	Set Email in Options » Authentication Response »
Default NameID format

	Disable all signature flags in Options » Signature, except
Sign SSO message which should be to On

	Select Metadata, and unprotect the field to paste the following
value:

<md:EntityDescriptor entityID="google.com" xmlns="urn:oasis:names:tc:SAML:2.0:metadata" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="https://www.google.com/a/mydomain.org/acs" index="1" />
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</NameIDFormat>
 </SPSSODescriptor>
</md:EntityDescriptor>

Attention

Change mydomain.org (in AssertionConsumerService
markup, parameter Location) into your Google Apps domain. Also adapt
your entityID to match the Assertion issuer: google.com/a/mydomain.org

Application menu

You can add a link in application menu to display
Google Apps to users.

You need to adapt some parameters:

	Address: set one of Google Apps URL (all Google Apps product a
distinct URL), for example
http://www.google.com/calendar/hosted/mydomain.org/render

	Display: As Google Apps is not a protected application, set to
On to always display it

Attention

Change mydomain.org into your Google Apps
domain

Logout

Google Apps does not support Single Logout (SLO).

Google Apps has a configuration parameter to redirect user on a specific
URL after Google Apps logout (see Google Apps control panel).

To manage the other way (LL::NG → Google Apps), you can add a dedicated
logout forward rule:

GoogleApps => http://www.google.com/calendar/hosted/mydomain.org/logout

Attention

Change mydomain.org into your Google Apps
domain

Grafana

[image: image0]

Presentation

Grafana [https://grafana.com/] is an Open Source dashboard for
monitoring databases such as Prometheus, Graphite or Elasticsearch

Grafana offers social login through a generic OAuth 2 connector.
Thankfully, it is close enough to OpenID Connect to work well with
LemonLDAP::NG

Pre-requisites

Grafana configuration

You should start by following the generic OAuth2 documentation provided
by Grafana: https://grafana.com/docs/grafana/latest/auth/generic-oauth/

Your configuration file will have to look something like this:

[auth.generic_oauth]
enabled = true
client_id = CHOOSE_A_CLIENT_ID
client_secret = CHOOSE_A_CLIENT_SECRET
scopes = openid email profile
auth_url = https://auth.example.com/oauth2/authorize
token_url = https://auth.example.com/oauth2/token
api_url = https://auth.example.com/oauth2/userinfo
allow_sign_up = true
name = LemonLDAP::NG
send_client_credentials_via_post = false
email_attribute_name = email

LL:NG

Make sure you have already
enabled OpenID Connect on your LemonLDAP::NG
server

Then, add a Relaying Party with the following configuration:

	Options » Authentification » Client ID : same as client_id above

	Options » Authentification » Client Secret : same as client_secret above

	Options » Allowed redirection address : https://<grafana domain>/login/generic_oauth

If you want to transmit extra user attributes to Grafana, you also need to configure:

	Extra Claims »

	add a key named profile

	set a value of name username display_name upn

	Exported Attributes (not all of them are mandatory)

	replace the existing keys with the following 5 new keys:

	name

	username

	display_name

	upn

	email

	map them to your corresponding LemonLDAP::NG session attribute

Tip

To trigger OIDC authentication directly, you can register grafana in application menu and
set as URL: https://<grafana domain>/login/generic_oauth

GRR

[image: image0]

Presentation

GRR [http://grr.devome.com/fr/] is a room booking software.

HTTP header

Configuration

GRR has a SSO configuration page in its administration panel.

Do not use Lemonldap mode, which is for a very old Lemonldap version,
but HTTP authentication.

Set the default profile of connected users and which headers contains
surname, firstname and mail.

[image: image1]

GRR will check the username in REMOTE_USER, so use
remote header conversion if you
are in proxy mode.

GRR virtual host in LL::NG

Access rules:

	^/index.php => accept

	default => unprotect

Headers:

	Auth-User $uid

	Auth-Sn: $sn

	Auth-GivenName: $givenName

	Auth-Mail: $mail

Guacamole

[image: image0]

Presentation

Apache Guacamole [https://guacamole.apache.org/] is a web-based
remote desktop gateway. It supports standard protocols like VNC, RDP,
and SSH.

As of version 0.9.14, Guacamole can use
OpenID Connect , CAS or
HTTP Headers as authentication
sources through plug-ins.

This document explains how to implement OpenID Connect

Pre-requisites

Guacamole

Refer to the official Guacamole
documentation [http://guacamole.apache.org/doc/gug/] to install
Guacamole, either manually or through Docker images

You need to be able to enable extensions. If you are using docker, you
need to follow these instructions in order to provide your own
extensions directory and Guacamole configuration
file [http://guacamole.apache.org/doc/gug/guacamole-docker.html#guacamole-docker-guacamole-home]

Your Guacamole configuration directory will look something like this.

├── extensions
│ └── 00-guacamole-auth-openid-1.0.0.jar
└── guacamole.properties

Danger

Make sure to rename the JAR in a way that ensures that it
will be loaded
first [https://lists.apache.org/thread.html/b781a5c4e4d14f7ce297200ba6886d888df4333f83836220ac8b69f1@%3Cuser.guacamole.apache.org%3E]

And guacamole.properties should contain at least

openid-authorization-endpoint: http://auth.example.com/oauth2/authorize
openid-jwks-endpoint: http://auth.example.com/oauth2/jwks
openid-issuer: http://auth.example.com
openid-client-id: guacamole
openid-redirect-uri: http://guacamole.example.com/guacamole/
openid-username-claim-type: sub

Tip

Remplace the redirect uri with your Guacamole server’s URL

LL:NG

Make sure you have already
enabled OpenID Connect on your LemonLDAP::NG
server

You also need to allow the Implicit Flow under
OpenID Connect Service » Security

Then, add a Relaying Party with the following configuration

	Options » Authentification » Client ID : same as openid-client-id
in guacamole.properties

	Options » Allowed redirection address : same as
openid-redirect-uri in guacamole.properties

	Options » ID Token Signature Algorithm : RS512

HumHub

[image: image0]

Présentation

HumHub [https://humhub.org/] is a free and open-source social
network written on top of the Yii2 PHP
framework [https://www.yiiframework.com/] that provides an easy to
use toolkit for creating and launching your own social network.

Unauthenticated users may connect using a login form against HumHub
local database or a LDAP directory, or choose which authentication
service they want to use.

Administrator can configure one or several OAuth, OAuth2 or OIDC
authentication services to be displayed as buttons on the login page.

With OpenID Connect authentication service, users successfully
authenticated by LemonLDAP::NG will be registered in HumHub upon their
first login.

Danger

HumHub retrieves a user from his username and the
authentication service he came through. As a result, a former local or
LDAP user will be rejected when trying to authenticate using another
authentication service. See
Migrate former local or ldap Humhub account to connect through SSO

OpenID Connect

Note

This set-up works with option enablePrettyUrl activated in
Humhub. If not activated, rewrite URL in Humhub HTTP server and allowed
redirect URL in LemonLDAP needs to be adapted to work with the non
pretty URL format.

Configuring HumHub

First disable LDAP (Administration > Users section) and delete (or
migrate) any local users whose username or email are
conflicting with the username or email of your OIDC users.

Then install and configure the OIDC connector for
humhub [https://github.com/Worteks/humhub-auth-oidc] extension using
composer :

	Install composer.

	Consider using prestissimo, to speed up composer update command (4x
faster):

composer global require hirak/prestissimo

	Go to {humhub_home} folder

	Check if composer.json file is present. If not, download it for your
current version:

wget https://raw.githubusercontent.com/humhub/humhub/v1.3.15/composer.json

	Install the connector as a dependency:

composer require --no-update --update-no-dev worteks/humhub-auth-oidc
composer update worteks/humhub-auth-oidc --no-dev --prefer-dist -vvv

Note

If you just need to update the connector, change its version
in composer.json and run the above composer update command.

	Edit {humhub_home}/protected/config/common.php with the client configuration :

'components' => [
 'authClientCollection' => [
 'clients' => [
 // ...
 'lemonldapng' => [
 'class' => 'worteks\humhub\authclient\OIDC',
 'domain' => 'https://auth.example.com',
 'clientId' => 'myClientId', // Client ID for this RP in LemonLDAP
 'clientSecret' => 'myClientSecret', // Client secret for this RP in LemonLDAP
 'defaultTitle' => 'auth.example.com', // Text displayed in login button
 'cssIcon' => 'fa fa-lemon-o', // Icon displayed in login button
],
],
 // ...
]

	Edit {humhub_home}/protected/config/web.php to disconnect users from LemonLDAP::NG after they logged out of Humhub:

return [
 // ...
 'modules' => [
 'user' => [
 'logoutUrl' => 'https://auth.domain.com/?logout=1',
],
]
];

User can now log in through SSO using a button on humhub logging page.
If you want to remove this intermediate login page, so user are
automatically logged in through SSO when they first access Humhub, you
can set up a redirection in the http server in front of the application
:

	Example in apache

RewriteEngine On
RewriteCond %{QUERY_STRING} !nosso [NC]
RewriteRule "^/user/auth/login$" "/user/auth/external?authclient=lemonldapng" [L,R=301]

	Example in nginx

if ($query_string !~ "nosso"){
 rewrite ^/user/auth/login$ /user/auth/external?authclient=lemonldapng permanent;
}

If the authentication was successful but the user could not be
registered in Humhub (which often happen if there is a conflict between
source, username or email), Humhub will redirect to the login page to
display the error, which trigger a redirection to the portal, ultimately
triggering a loop error while registration error is not displayed.

To change this behavior and display the registration error,
AuthController.onAuthSuccess method needs to be adapted so redirect to
SSO will be bypassed when a registration error occured. This works for
version 1.3.15 :

	Go to {humhub_home} folder

	Execute

sed -i "s|return \$this->redirect(\['/user/auth/login'\]);|return \$this->redirect(['/user/auth/login','nosso'=>'showerror']);|" protected/humhub/modules/user/controllers/AuthController.php

Configuring LemonLDAP

If not done yet, configure LemonLDAP::NG as an
OpenID Connect service.

Then, configure LemonLDAP::NG to recognize your HumHub instance as a
valid new OpenID Connect Relying Party
using the following parameters:

	Client ID: the same you set in HumHub configuration

	Client Secret: the same you set in HumHub configuration

	
	Add the following exported attributes
	
	given_name: user’s givenName attribute

	family_name: user’s sn attribute

	email: user’s mail attribute

	Redirect URIs containing your Yii2 auth client ID.

Configuration sample using CLI:

$ /usr/libexec/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataExportedVars/humhub given_name givenName \
 oidcRPMetaDataExportedVars/humhub family_name sn \
 oidcRPMetaDataExportedVars/humhub email mail \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsClientID myClientId \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsClientSecret myClientSecret \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsRedirectUris 'https://humhub.example.com/user/auth/external?authclient=lemonldapng' \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsPostLogoutRedirectUris 'https://humhub.example.com' \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsIDTokenSignAlg RS512 \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsIDTokenExpiration 3600 \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsAccessTokenExpiration 3600 \
 oidcRPMetaDataOptions/humhub oidcRPMetaDataOptionsBypassConsent 1 && \

Migrate former local or ldap Humhub account to connect through SSO

You need to manually update Humhub database to swith authentication mode
to LemonLDAP::NG.

Table “user”:

	Columns “username” and “email” should match exactly OIDC sub and email attributes ;

	If former ldap user, change column “auth_mode” to “local”.

Table “user_auth”:

	Add an entry with user_id, username and “lemonldapng” as source (or the name you chose in your connector configuration) :

+---------+-------------+-------------+
| user_id | source | source_id |
+---------+-------------+-------------+
| 4 | lemonldapng | jdoe |

Troubleshooting

If LemonLDAP login page freezes because of a browser security blockage,
adapt security’s CSP Form Action to allow HumHub host :

$ /usr/libexec/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 cspFormAction "'self' https://*.example.com"

i-Parapheur

[image: image0]

Presentation

i-Parapheur [https://www.libriciel.fr/i-parapheur/] is a web application
allowing digital signature on documents. It was built around Alfresco.

It can use external authentication based on HTTP header.

Configuration

On i-Parapheur

Edit /opt/iParapheur/tomcat/shared/classes/alfresco-global.properties and add:

parapheur.auth.external.header.authorize=true

Edit /opt/iParapheur/tomcat/shared/classes/iparapheur-global.properties and add:

parapheur.auth.external.header.name=Auth-User
parapheur.auth.external.header.regexp=.*

On LemonLDAP::NG

Go to the Manager and create a new virtual host for iParapheur.

Just configure the access rules.

Create the Auth-User header to send the user login to iParapheur.

Jitsi Meet

[image: image0]

Presentation

Jitsi Meet [https://github.com/jitsi/jitsi-meet] is a WEBRTC-based
video conferencing application, powering the
meet.jit.si [http://meet.jit.si] online service.

Users may install their own instance of Jitsi Meet for private use, in
which case, they may use authentication to control the creation of
conference rooms.

The official documentation provides instructions on how to configure
Jitsi Meet to use
Shibboleth [https://github.com/jitsi/jicofo/blob/master/doc/shibboleth.md],
but with a little adaptation, it can work just as fine with
LemonLDAP::NG.

Configuration

Pre-requisites

This documentation assumes that you have already installed a Nginx-based
LemonLDAP::NG Handler on your Jitsi server.

You need to install Nginx before Jitsi Meet. If you install Jitsi Meet first,
the Jitsi Meet installer will not generate a Nginx configuration file.

We assume that you have followed the Jitsi Meet
quick
start [https://github.com/jitsi/jitsi-meet/blob/master/doc/quick-install.md]

Jitsi Meet configuration

As with the Shibboleth guide, you need to configure
/etc/jitsi/jicofo/sip-communicator.properties

org.jitsi.jicofo.auth.URL=shibboleth:default
org.jitsi.jicofo.auth.LOGOUT_URL=/logout/

This defines the login servlet as /login/ and the logout URL as
/logout/

Jitsi Meet Nginx configuration

In the Nginx configuration that the Jitsi Meet quickstart generated, you
must add the following blocks, just like you would in a typical handler
configuration file:

This block lets Nginx know how to contact the local LLNG handler
for authentication
location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 fastcgi_param HOST $http_host;
 fastcgi_param X_ORIGINAL_URI $original_uri;
}

Protect only the /login/ URL
You may want to change this is your goal is to make the whole Jitsi Meet instance private
location /login/ {

 # Protect the current path with LLNG
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;

 # Transmis user information to Jitsi through HTTP headers
 auth_request_set $mail $upstream_http_mail;
 proxy_set_header mail $mail;
 auth_request_set $displayname $upstream_http_displayName;
 proxy_set_header displayName $displayname;
 auth_request_set $lmcookie $upstream_http_cookie;
 proxy_set_header Cookie: $lmcookie;

 # Proxy requests to Jitsi Meet
 proxy_pass http://127.0.0.1:8888/login;
}

Warning

Thoses 2 blocks should be append BEFORE the following block:

#Anything that didn't match above, and isn't a real file,
#assume it's a room name and redirect to /
location ~ ^/([^/?&:'"]+)/(.*)$ {
 set $subdomain "$1.";
 set $subdir "$1/";
 rewrite ^/([^/?&:'"]+)/(.*)$ /$2;
}

Jitsi Meet Virtual host in Manager

Go to the Manager and create a new virtual host
for Jitsi Meet.

Configure the access rules.

	Don’t forget to configure the /logout/ URL

Configure the following headers.

	mail: $mail

	displayName: $cn

Danger

Jitsi meet expects to find a mail HTTP header, it
will ignore REMOTE_USER and only use the mail value to identify the
user.

Liferay

[image: image0]

Presentation

Liferay [http://www.liferay.com/] is an enterprise portal.

Liferay can use LL::NG as an SSO provider but you have to manage how
users are created:

	By hand in Liferay administration screens

	Imported from an LDAP directory

Of course, integration will be full if you use the LDAP directory as
users backend for LL::NG and Liferay.

Attention

If the user is not created, or can not be created via
LDAP import, the connection to Liferay will be refused. With LDAP,
login, mail, first name and last name are required attributes. If one is
missing, the user is not created.

This documentation just explains how to set up the SSO part. Please
refer to Liferay documentation to enable LDAP provisionning.

Configuration

Liferay administration

Access to Liferay (first time):

[image: image1]

Login as administrator:

[image: image2]

Go to My Account:

[image: image3]

Go to Portal » Settings:

[image: image4]

Go to Configuration » Authentication:

[image: image5]

In General, fill at least the following information:

	How do users authenticate?: by login

Tip

We advice to deactivate other options, cause users will use
LL::NG portal to modify or reset their password.

[image: image6]

Attention

You need to activate LDAP authentication, else SSO
authentication will not work. Do this in the control panel or in the
configuration file:

ldap.auth.enabled=true

Then use the SiteMinder tab to configure SSO:

	Enabled: Yes

	Import from LDAP: Yes (see presentation)

	User Header: Auth-User (case sensitive)

[image: image7]

Attention

Do not forget to save your changes!

Liferay virtual host

Configure Liferay virtual host like other
protected virtual host.

	For Apache:

<VirtualHost *:80>
 ServerName liferay.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name liferay.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Liferay virtual host in Manager

Go to the Manager and create a new virtual host
for Liferay.

Just configure the access rules. You
can add a rule for logout:

^/c/portal/logout => logout_sso

Configure the Auth-User header.

LimeSurvey

[image: image0]

Presentation

LimeSurvey [http://www.limesurvey.org] is a web survey software
written in PHP.

HTTP Headers

LimeSurvey has a webserver authentication mode that allows one to
integrate it directly into LemonLDAP::NG.

To have a stronger integration, we will configure LimeSurvey to
autocreate unknown users and use HTTP headers to fill name and mail.

Attention

We suppose that LimeSurvey is installed in
/var/www/html/limesurvey

LimeSurvey configuration

In Administration panel, go in Configuration > Parameters > Extensions
manager. Select the WebServer module and configure it.

[image: image1]

This is enough for the authentication part.

Tip

If you are blocked, you can deactivate the plugin with this
request in database:

update lime_plugins SET active=0 where name="Authwebserver";

To configure account autocreation, you need to edit
application/config/config.php: The configuration is done in config.php:

vi /var/www/html/limesurvey/application/config/config.php

'config'=>array(
// debug: Set this to 1 if you are looking for errors. If you still get no errors after enabling this
// then please check your error-logs - either in your hosting provider admin panel or in some /logs directory
// on your webspace.
// LimeSurvey developers: Set this to 2 to additionally display STRICT PHP error messages and get full access to standard templates
 'debug'=>0,
 'debugsql'=>0, // Set this to 1 to enanble sql logging, only active when debug = 2
 // Update default LimeSurvey config here
 'auth_webserver_autocreate_user' => true,
 'auth_webserver_autocreate_profile' => Array('full_name' => $_SERVER['HTTP_AUTH_CN'],'email' => $_SERVER['HTTP_AUTH_MAIL'],'lang'=>'en'),
 'auth_webserver_autocreate_permissions' => Array('surveys' => array('create'=>true,'read'=>false,'update'=>false,'delete'=>false)),
)

See also
https://manual.limesurvey.org/Optional_settings#Authentication_delegation_with_automatic_user_import

LimeSurvey virtual host

Configure LimeSurvey virtual host like other
protected virtual host.

LimeSurvey virtual host in Manager

Go to the Manager and create a new virtual host
for LimeSurvey.

Headers

	Header name

	Description

	Auth-User

	user login

	Auth-Cn

	user full name

	Auth-Mail

	user email

Rules

	Rule name

	Expression

	Description

	Logout

	/sa/logout$

	Logout rule (for example logout_app_sso)

	Admin

	
	Allow only admin and superadmin users

	Default

	default

	Allow only users with a LimeSurvey role

Tip

You can set the default access to:

	accept: all authenticated users will access surveys

	unprotect: no authentication will be asked to access surveys

Mattermost Team Edition

[image: image0]

Presentation

Mattermost is a team-based instant messaging application.

See the official Mattermost website [https://mattermost.com/] for a
complete presentation.

Mattermost follows an Open Core development model. The freely available
Team edition [https://docs.mattermost.com/developer/manifesto.html]
contains all the basic chat features, but lack the integration
capabilities found in the Enterprise
edition [https://mattermost.com/pricing/].

The Enterprise edition provides SAML
integration [https://docs.mattermost.com/deployment/sso-saml.html]
out of the box, and you can configure it just like
any other SAML service in LemonLDAP::NG

The Team edition, however, only provides SSO integration with Gitlab.

However, it is possible to configure LemonLDAP::NG to behave exactly
like a Gitlab Oauth2 server, allowing Mattermost Team Edition to be
integrated with LemonLDAP::NG without having to use a
Gitlab server.

Danger

The following configuration requires your user database
to expose a unique numeric identifier for every user.

Configuring Mattermost Team Edition

Configuring Mattermost through the System Console will not allow you
to set the correct URLs. You need to edit the Mattermost configuration
file, and avoid changing Gitlab integration settings in the System
Console

Set the following settings in /opt/mattermost/config/config.json

"GitLabSettings": {
 "Enable": true,
 "Secret": "CHOOSE_A_CLIENT_SECRET",
 "Id": "CHOOSE_A_CLIENT_ID",
 "Scope": "",
 "AuthEndpoint": "https://auth.example.com/oauth2/gitlab_authorize",
 "TokenEndpoint": "https://auth.example.com/oauth2/token",
 "UserApiEndpoint": "https://auth.example.com/oauth2/userinfo"
},

Configuring your web server

Mattermost does not use OpenID Connect to communicate with Gitlab, but
uses plain OAuth2 instead. Because of that, LemonLDAP::NG will not
receive the scope= parameter and will display an error on the portal
when trying to authenticate.

In order to fix this, we can add a fake OAuth2 authorize URL on the
LemonLDAP::NG server that will automatically add this scope=
parametrer, before sending the request to the correct OIDC URL

Here is an example configuration for Nginx, add it in your Portal
virtualhost before any other rewrite rule:

rewrite ^/oauth2/gitlab_(authorize.*)$ https://auth.example.com/oauth2/$1?scope=openid%20gitlab ;

And if you are using Apache

RewriteRule "^/oauth2/gitlab_authorize(.*)$" "https://auth.example.com/oauth2/authorize?$1scope=openid gitlab" [QSA,NE]

Configuring LemonLDAP

We now have to configure LemonLDAP::NG to recognize Mattermost as a
valid OAuth2 relaying party and send it the information it needs to
recognize a user.

Add a new OpenID Connect relaying party
with the following parameters:

	Client ID: the same you set in Mattermost configuration

	Client Secret: the same you set in Mattermost configuration

	
	Add a new scope in “Extra claims”
	
	Key: gitlab

	Value: id username name email

	
	Add the following exported attributes
	
	username: set it to the session attribute containing the user login

	name: session attribute containing the user’s full name

	email: session attribute containing the user’s email

	id: session attribute containing the user’s numeric ID. You must set
this claim type to Integer

Danger

Mattermost absolutely needs to receive a numerical value in the id
claim. If you are using a LDAP server, you could use the uidNumber LDAP
attribute. If you use something else, you will have to find a way to
assign a unique numeric ID to each Mattermost user.

The id attribute has to be different for each user, since this is
the field Mattermost will use internally to map Gitlab identities to
Mattermost accouts.

Troubleshooting

If you see a HTTP code 500 when going back to mattermost, with a panic()
in (*GitLabUser).IsValid(...) , it probably means that you are not
exporting the correct attributes, but it can also mean that id is
exported as a JSON string.

Note

An issue in version 2.0.9 prevented the id field from being sent correctly.
Upgrade your LemonLDAP-NG installation to at least 2.0.10 and set the claim
type to Integer

MediaWiki

[image: image0]

Presentation

MediaWiki [http://www.mediawiki.org] is a wiki software, used by the
well known Wikipedia [http://www.wikipedia.org].

Several extensions allows one to configure SSO on MediaWiki:

	Automatic
REMOTE_USER [http://www.mediawiki.org/wiki/Extension:AutomaticREMOTE_USER]

	Siteminder
Authentication [http://www.mediawiki.org/wiki/Extension:Siteminder_Authentication]

We will explain how to use Automatic
REMOTE_USER [http://www.mediawiki.org/wiki/Extension:AutomaticREMOTE_USER]
extension.

Installation

The extension is presented here:
http://www.mediawiki.org/wiki/Extension:AutomaticREMOTE_USER

You can download the code here:
https://www.mediawiki.org/wiki/Special:ExtensionDistributor/Auth_remoteuser

You have to install ‘’ Auth_remoteuser’’ in the extensions/
directory of your MediaWiki installation:

cp -a Auth_remoteuser/ extensions/

Configuration

MediWiki local configuration

Then edit MediaWiki local settings

vi LocalSettings.php

require_once "$IP/extensions/Auth_remoteuser/Auth_remoteuser.php";
$wgAuth = new Auth_remoteuser();

Add then extension configuration, for example:

$wgAuthRemoteuserAuthz = true; /* Your own authorization test */
$wgAuthRemoteuserName = $_SERVER["HTTP_AUTH_CN"]; /* User's name */
$wgAuthRemoteuserMail = $_SERVER["HTTP_AUTH_MAIL"]; /* User's Mail */
$wgAuthRemoteuserNotify = false; /* Do not send mail notifications */
//$wgAuthRemoteuserDomain = "NETBIOSDOMAIN"; /* Remove NETBIOSDOMAIN\ from the beginning or @NETBIOSDOMAIN at the end of a IWA username */
/* User's mail domain to append to the user name to make their email address */
//$wgAuthRemoteuserMailDomain = "example.com";

// see http://www.mediawiki.org/wiki/Manual:Hooks/SpecialPage_initList
// and http://www.mediawiki.org/w/Manual:Special_pages
// and http://lists.wikimedia.org/pipermail/mediawiki-l/2009-June/031231.html
// disable login and logout functions for all users
function LessSpecialPages(&$list) {
 unset($list['Userlogout']);
 unset($list['Userlogin']);
 return true;
}
$wgHooks['SpecialPage_initList'][]='LessSpecialPages';

// http://www.mediawiki.org/wiki/Extension:Windows_NTLM_LDAP_Auto_Auth
// remove login and logout buttons for all users
function StripLogin(&$personal_urls, &$wgTitle) {
 unset($personal_urls["login"]);
 unset($personal_urls["logout"]);
 unset($personal_urls['anonlogin']);
 return true;
}
$wgHooks['PersonalUrls'][] = 'StripLogin';

Danger

In last version of Auth_remoteuser and Mediawiki, empty
passwords are not authorized, so you may need to patch the extension
code if you get the error: “Unexpected REMOTE_USER authentication
failure. Login Error was:EmptyPass”. If necessary, use the code
below to patch the extension:

sed -i "s/'wpPassword' => ''/'wpPassword' => 'none'/" extensions/Auth_remoteuser/Auth_remoteuser.body.php

Danger

In last version of Auth_remoteuser and Mediawiki,
auto-provisioning requires REMOTE_USER to match the normalized mediawiki
username (for example: john_doe -> john doe), so you may need to patch
the extension code if you get the error: “Unexpected REMOTE_USER
authentication failure. Login Error was:WrongPluginPass” You can
use the code below for normalizing logins containing “_” in the
extension:

sed -i '/$usertest = $this->getRemoteUsername();/a\ $usertest = str_replace("_"," ", $usertest);' extensions/Auth_remoteuser/Auth_remoteuser.body.php

MediaWiki virtual host

Configure MediaWiki virtual host like other
protected virtual host.

Attention

If you are protecting MediaWiki with LL::NG as reverse
proxy,
convert header into REMOTE_USER environment variable.

	For Apache:

<VirtualHost *:80>
 ServerName mediawiki.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name mediawiki.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

MediaWiki virtual host in Manager

Go to the Manager and create a new virtual host
for MediaWiki.

Just configure the access rules. You
can also add a rule for logout:

Userlogout => logout_sso

You can create these two headers to fill user name and mail (see
extension configuration):

Auth-Cn => $cn
Auth-Mail => $mail

If using LL::NG as reverse proxy, configure also the Auth-User
header,

Mobilizon

[image: mobilizon_logo.jpg]

Presentation

Mobilizon [https://joinmobilizon.org] is an online tool to help manage your events, your profiles and your groups.

Mobilizon lets users authenticate with OpenID Connect [https://docs.joinmobilizon.org/administration/configure/auth/#oauth] through the same plugin used by Keycloak.

First, make sure you have set up LemonLDAP::NG ‘s
OpenID Connect service and added
a Relaying Party for your Mobilizon instance

The only options you need to configure are:

	Client ID: choose one

	Client Secret: choose one

	Allowed redirection addresses for login: https://mobilizon.example.com/auth/keycloak/callback

Mobilizon configuration

Edit /etc/mobilizon/config.exs, and adjust the Client ID, Client Secret and URLs to match your domain

config :ueberauth,
 Ueberauth,
 providers: [
 keycloak: {Ueberauth.Strategy.Keycloak, [default_scope: "openid profile email"]}
]

config :mobilizon, :auth,
 oauth_consumer_strategies: [
 {:keycloak, "LemonLDAP::NG"}
]

config :ueberauth, Ueberauth.Strategy.Keycloak.OAuth,
 client_id: "CHANGEME",
 client_secret: "CHANGEME",
 site: "https://auth.example.com",
 authorize_url: "https://auth.example.com/oauth2/authorize",
 token_url: "https://auth.example.com/oauth2/token",
 userinfo_url: "https://auth.example.com/oauth2/userinfo",
 token_method: :post

NextCloud

[image: image0]

Presentation

NextCloud [https://nextcloud.com/] is a fork of Owncloud, suite of
client-server software for creating file hosting services and using
them.

This documentation explains how to interconnect LemonLDAP::NG and
NextCloud using SAML 2.0 protocol.

Pre-requisites

NextCloud

You need to install the
software [https://docs.nextcloud.com/server/10/admin_manual/installation/index.html].

Tip

If your NextCloud is behind a proxy (thus having a private
IP), metadata generated by NextCloud won’t work.

Consider changing the configuration of NextCloud to force the domain and the protocol, in
$nextcloudrootwww/config/config.php, add the following:

'overwritehost' => 'nextcloud.example.com',
'overwriteprotocol' => 'https',

You also need to enable the “SAML authentication” plugin in your
NextCloud. <code> + Apps -> Not enabled -> SAML authentication</code>

LL:NG

You need to enable SAML 2.0 issuer module in LL:NG:

"General Parameters -> Issuer modules -> SAML -> Activation"

[image: image1]

NextCloud, SAML 2.0 configuration

Configuration of SAML 2.0 in NextCloud is pretty straightforward.

Administration -> SAML authentication

You will find the following fields:

	Attribute to map the UID to: Identity attribute provided by your
LL:NG that will be used as UID in NextCloud.

	Identity Provider Data:

	Identifier of the IdP entity: SAML Metadata URL of your LL:NG

	URL Target of the IdP where the SP will send the Authentication
Request Message: SingleSignOn URL of your LL:NG

	URL Location of the IdP where the SP will send the SLO
Request: SingleLogOut URL of your LL:NG

	Public X.509 certificate of the IdP: Certificate of your LL:NG
(see below for instructions)

We need a few steps to generate our LL:NG certificate (unless you
already have one). You first need to create a pair of SSH Keys in LL:NG:

SAML 2 Service -> Security Parameters -> Signature

and click “New keys” [image: image2]

Take the private key in a private.key file, and run the following:

openssl req -new -key private.key -out cert.csr
openssl x509 -req -days 3650 -in cert.csr -signkey private.key -out cert.pem

Copy/Paste the content of your new cert.pem in the “Public X.509
certificate of the IdP” field of your NextCloud.

Your fields should look like this: [image: image3]

You can now download your metadata xml file.

LL:NG, SAML 2.0 Service Provider configuration

We now have to define a service provider (e.g our nextcloud) in LL:NG.

Go to “SAML service providers”, click on “Add SAML SP” and name it as
you want (example : ‘NextCloud’)

In the new subtree ‘NextCloud’, open ‘Metadata’ and paste the content of
your previously downloaded file (or upload the file)

[image: image4]

Now go in “Exported attributes” and add, at least, the ‘uid’

[image: image5]

Don’t forget to save your configuration.

You are now good to go, and you can add the application in
your menu and
your virtual hosts.

OBM

[image: image0]

Presentation

OBM [http://obm.org] is enterprise-class messaging and collaboration
platform for workgroup or enterprises with many thousands users. OBM
includes Groupware, messaging server, CRM, LDAP, Windows Domain,
smartphone and PDA synchronization…

OBM is shipped with a LL::NG plugin with these features:

	SSO on OBM web interface

	Logout

	User provisioning (account auto creation at first connection)

Configuration

OBM

To enable LL::NG authentication plugin, go in /etc/obm/obm_conf.inc:

$auth_kind = 'LemonLDAP';

$lemonldap_config = Array(
 "auto_update" => true,
 "auto_update_force_user" => true,
 "auto_update_force_group" => false,
 "url_logout" => "https://OBMURL/logout",
 "server_ip_address" => "localhost",
 "server_ip_check" => false,
 "debug_level" => "NONE",
// "debug_header_name" => "HTTP_OBM_UID",
// "group_header_name" => "HTTP_OBM_GROUPS",
 "headers_map" => Array(
 //"userobm_gid" => "HTTP_OBM_GID",
 //"userobm_domain_id" => ,
 "userobm_login" => "HTTP_OBM_UID",
 "userobm_password" => "HTTP_OBM_USERPASSWORD",
 //"userobm_password_type" => ,
 "userobm_perms" => "HTTP_OBM_PERMS",
 //"userobm_kind" => ,
 "userobm_lastname" => "HTTP_OBM_SN",
 "userobm_firstname" => "HTTP_OBM_GIVENNAME",
// "userobm_title" => "HTTP_OBM_TITLE",
 "userobm_email" => "HTTP_OBM_MAIL",
 "userobm_datebegin" => "HTTP_OBM_DATEBEGIN",
 //"userobm_account_dateexp" => ,
 //"userobm_delegation_target" => ,
 //"userobm_delegation" => ,
 "userobm_description" => "HTTP_OBM_DESCRIPTION",
 //"userobm_archive" => ,
 //"userobm_hidden" => ,
 //"userobm_status" => ,
 //"userobm_local" => ,
 //"userobm_photo_id" => ,
 "userobm_phone" => "HTTP_OBM_TELEPHONENUMBER",
 //"userobom_phone2" => ,
 //"userobm_mobile" => ,
 "userobm_fax" => "HTTP_OBM_FACSIMILETELEPHONENUMBER",
 //"userobm_fax2" => ,
 "userobm_company" => "HTTP_OBM_O",
 //"userobm_direction" => ,
 "userobm_service" => "HTTP_OBM_OU",
 "userobm_address1" => "HTTP_OBM_POSTALADDRESS",
 //"userobm_address2" => ,
 //"userobm_address3" => ,
 "userobm_zipcode" => "HTTP_OBM_POSTALCODE",
 "userobm_town" => "HTTP_OBM_L",
 "userobm_zipcode" => "HTTP_OBM_POSTALCODE",
 "userobm_town" => "HTTP_OBM_L",
 //"userobm_expresspostal" => ,
 //"userobm_host_id" => ,
 //"userobm_web_perms" => ,
 //"userobm_web_list" => ,
 //"userobm_web_all" => ,
 //"userobm_mail_perms" => ,
 //"userobm_mail_ext_perms" => ,
 //"userobm_mail_server_id" => ,
 //"userobm_mail_server_hostname" => ,
 "userobm_mail_quota" => "HTTP_OBM_MAILQUOTA",
 //"userobm_nomade_perms" => ,
 //"userobm_nomade_enable" => ,
 //"userobm_nomade_local_copy" => ,
 //"userobm_email_nomade" => ,
 //"userobm_vacation_enable" => ,
 //"userobm_vacation_datebegin" => ,
 //"userobm_vacation_dateend" => ,
 //"userobm_vacation_message" => ,
 //"userobm_samba_perms" => ,
 //"userobm_samba_home" => ,
 //"userobm_samba_home_drive" => ,
 //"userobm_samba_logon_script" => ,
 // ---- Unused values ? ----
 "userobm_ext_id" => "HTTP_OBM_SERIALNUMBER",
 //"userobm_system" => ,
 //"userobm_nomade_datebegin" => ,
 //"userobm_nomade_dateend" => ,
 //"userobm_location" => ,
 //"userobm_education" => ,
),
);

Parameters:

	url_logout: URL used by OBM to logout, will be caught by LL::NG

	headers_map: map OBM internal field to LL::NG header

Edit also OBM configuration to enable LL::NG Handler:

	For Apache:

<VirtualHost *:80>
 ServerName obm.example.com

 # SSO protection
 PerlHeaderParserHandler Lemonldap::NG::Handler

 DocumentRoot /usr/share/obm/php

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name obm.example.com;
 root /usr/share/obm/php;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location ~ \.php$ {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

LL::NG

Attributes and macros

You will need to collect all attributes needed to create a user in OBM,
this includes:

	First name

	Last name

	Login

	Mail

	…

To add these attributes, go in Manager, Variables »
Exported Variables.

Attention

If you plan to forward user’s password to OBM, then you
have to keep the password in session.

You may also create these macros to manage OBM administrator account
(Variables » Macros):

	field

	value

	uidR

	($uid =~ /^admin0/i)[0] ? "admin0\@global.virt" : $uid

	mailR

	($uid =~ /admin0/i)[0] ? "" : ($mail =~ / ([@]+)/)[0] . "\@example.com"

Virtual host

Create OBM virtual host (for example obm.example.com) in LL::NG
configuration: Virtual Hosts » New virtual host.

Then edit rules and headers.

Rules

Define at least:

	Default rule: who can access to the application

	Logout rule: catch OBM logout

	Exceptions: allow anonymous access for specific URLs (connectors,
etc.)

	field

	value

	^/logout

	logout_sso

	^/obm-sync

	unprotect

	^/minig

	unprotect

	^/Microsoft-Server-ActiveSync

	unprotect

	^/caldav

	unprotect

	default

	accept (or whatever you want)

Headers

Define headers used in OBM mapping, for example:

	field

	valeur

	OBM_GIVENNAME

	$givenName

	OBM_GROUPS

	$groups

	OBM_UID

	$uidR

	OBM_MAIL

	$mailR

	OBM_USERPASSWORD

	$_password

Other

Do not forget to add OBM in applications menu.

Office 365

[image: image0]

Presentation

Office 365 [https://en.wikipedia.org/wiki/Office_365] provides
online access to Microsoft products like Office, Outlook or Yammer.
Authentication is done on https://login.microsoftonline.com/ and can be
forwarded to an SAML Identity Provider.

Configuration

Office 365

You first need to install AzureAD PowerShell to be able to run
administrative commands.

Then run this script:

$dom = "mycompany.com"
$brand = "My Company"
$url = "https://auth.example.com/saml/singleSignOn"
$uri = "https://auth.example.com/saml/metadata"
$logouturl = "https://auth.example.com/?logout=1"
$cert = "xxxxxxxxxxxxxxxxxxx"

Set-MsolDomainAuthentication –DomainName $dom -FederationBrandName $brand -Authentication Federated -PassiveLogOnUri $url -SigningCertificate $cert -IssuerUri $uri -LogOffUri $logouturl -PreferredAuthenticationProtocol SAMLP

Where parameters are:

	dom: Your Office 365 domain

	brand: Simple label

	url: The SAML SSO endpoint

	uri: The SAML metadata endpoint

	logouturl: Logout URL

	cert: The SAML certificate containing the signature public key

If you have several Office365 domains, you can’t use the same URLs for
each domains. To be able to have a single SAML IDP for several domains,
you must add the ‘domain’ GET parameters at the end of SSO endpoint and
metadata URLs, for example:

	domain ‘mycompany.com’:

	url: https://auth.example.com/saml/singleSignOn?domain=mycompany

	uri: https://auth.example.com/saml/metadata?domain=mycompany

	domain ‘myfirm.com’:

	url: https://auth.example.com/saml/singleSignOn?domain=myfirm

	uri: https://auth.example.com/saml/metadata?domain=myfirm

LemonLDAP::NG

Create a new SAML Service Provider and import Microsoft metadata from
https://nexus.microsoftonline-p.com/federationmetadata/saml20/federationmetadata.xml

Set the NameID value to persistent, or any immutable value for the user.

Create a SAML attribute named IDPEmail which contains the user principal
name (UPN).

Publik

[image: image0]

Presentation

Publik is an open-source citizen relationship management tool.

See the official Publik website [https://publik.entrouvert.com/] for a
complete presentation.

It feature an OpenID Connect login that work with LemonLDAP::NG.

Configuring Publik

Connect to your publik instance authentic2 webui with an Admin user, in the admin panel, go to “Authentic2_Auth_Oidc” › “Oidc providers”.

Click on “Add Oidc Provider”.

	Name : LemonLDAP SSO

	Short id : lemonldap

	Provider : https://auth.example.com/

	Client id : clientid

	Client secret : secret

	Authorization endpoint : https://auth.example.com/oauth2/authorize

	Token endpoint : https://auth.example.com/oauth2/token

	Userinfo endpoint : https://auth.example.com/oauth2/userinfo

	End session endpont : https://auth.example.com/oauth2/logout

	WebKey JSON : Copy/Paste the content of https://auth.example.com/oauth2/jwks

	Claims Enabled : yes

	Show on connection page : yes

Strategy and Collectivity can be configured based to your needs.

OIDC Claim mappings can be configured based on your needs.

Configuring LemonLDAP

We now have to configure LemonLDAP::NG to recognize publik as a valid OIDC relying party.

Add a new OpenID Connect relying party
with the following parameters (Options -> Basic) :

	Client ID: the same you set in Publik configuration.

	Client Secret: the same you set in Publik configuration.

	Allowed redirection addresses for login: The “Callback URL” for authentic2 : https://authentic2-instance/accounts/oidc/callback/

phpLDAPadmin

[image: image0]

Presentation

phpLDAPadmin [http://phpldapadmin.sourceforge.net] is an LDAP
administration tool written in PHP.

phpLDAPadmin will connect to the directory with a static DN and
password, and so will not request authentication anymore. The access to
phpLDAPadmin will be protected by LemonLDAP::NG with specific access
rules.

Danger

phpLDAPadmin will have no idea of the user connected to
the WebSSO. So a simple user can have admin rights on the LDAP directory
if your access rules are too lazy.

Configuration

phpLDAPadmin local configuration

Just set the authentication type to config and indicate DN and
password inside the file config.php:

$servers->SetValue('login','auth_type','config');
$servers->SetValue('login','bind_id','cn=Manager,dc=example,dc=com');
$servers->SetValue('login','bind_pass','secret');

phpLDAPadmin virtual host

Configure phpLDAPadmin virtual host like other
protected virtual host.

	For Apache:

<VirtualHost *:80>
 ServerName phpldapadmin.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name phpldapadmin.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

phpLDAPadmin virtual host in Manager

Go to the Manager and create a new virtual host
for phpLDAPadmin.

Just configure the access rules.

No headers are required.

RoundCube

Presentation

RoundCube [http://www.roundcube.net] webmail is a browser-based
multilingual IMAP client with an application-like user interface. It
provides full functionality you expect from an email client, including
MIME support, address book, folder manipulation, message searching and
spell checking.

Configuration

LemonLDAP::NG

	Add a new virtual host webmail.domain.tld

	Add a new rule:

"^/\?_task\=logout" -> "logout_app https://auth.domain.tld"

	in HTTP headers, you need Auth-User ($mail) and Auth-Pw ($_password).

Attention

To be able to forward password to RoundCube, see
how to store password in session

	Configure Apache or Nginx virtual host

RoundCube

	install http_authentication plugin

	Patch it to replace PHP_AUTH_* by HTTP_AUTH_*

	enable http_authentication plugin in main.inc.php :

$rcmail_config['plugins'] = array('http_authentication');

SalesForce

[image: image0]

Presentation

Salesforce Inc. is a cloud computing company. It is best known for their
CRM products and social networking applications.

It allows one to use SAML to authenticate users. It can deal with both
SP and IdP initiated modes.

This page presents the SP initiated mode.

To work with LL::NG it requires:

	LL::NG configured as SAML Identity Provider

Configuration

You should have configured LL::NG as a
SAML Identity Provider.

Create Salesforce domain

[image: image1]

For using SP-initiated mode, you must create your salesforce domain.
Creation can take up to 1 hour. (if it is superior to 1h, then there is
a problem. Problems are generally resolved in up to 72 hours)

Then you must deploy this domain in order to go on with the
configuration.

Finally, just ensure that at least:

	Login policy

	Redirect policy

	domain name

	authentication service

match with the correct values. (adapt the domain if necessary)

Attention

For now, the authentication service parameter has no
domain available. You must come back later to fill this parameter. Once
SAML cinematics are working, you can then put your domain, and delete
the login form, and you’ll have an automatic redirection to your
Identity Provider (no need for the user to click). Note that you can
always access Salesforce by the general login page:
https://login.salesforce.com

SAML settings

Salesforce is not able to read metadata, you must fill the information
into a form.

[image: image2]

Go to the SAML Single Sign On settings, and fill these information:

	Name: should be filled automatically with your organization or domain

	SAML Version: check that version 2.0 is used

	Issuer: this is the LemonLDAP::NG (our IdP) Entity Id, which is by
default #PORTAL#/saml/metadata

	Identity Provider Certificate: whereas it is mentioned that this is
the authentication certificate, you must give your LemonLDAP::NG
(IdP) signing certificate. If you don’t have one, create it with the
signing key pair already generated (you could do this with openssl).
SSL authentication (https) does not seem to be checked anyway.

	Signing Certificate: choose a certificate for SP signature. (create
one if none is present)

	Assertion decryption Certificate: choose a certificate only if you
want to cipher your assertion. (default is not to cipher)

	SAML Identity Type: choose Federation ID. This means that the user
Name ID will be mapped to the Federation ID field. (see next section)

	SAML Identity Location: choose if the user Name ID is held in the
subject or in some attribute

	Identity Provider Login URL: the user/password SAML portal location
on the IdP

	Identity Provider Logout URL: the logout location on the IdP

	Custom Error URL: you can redirect the user to a special page when an
error is happening

	SP Initiated Binding: chose any of the supported binding (every one
listed there is currently supported on LemonLDAP::NG) HTTP POST is a
good choice

	Salesforce Login URL: generated automatically. This is the entry
point of our login cinematic.

	OAuth 2.0 Token Endpoint: not used here

	API Name: filled automatically

	User Provisioning Enabled: should create automatically the user in
Salesforce (not functionnal right now)

	EntityId: Salesforce (the SP) Entity ID. Fill this field accordingly.
It should be the same value as the organization domain url, displayed
on the previous section

Configure Federation ID

Finally, configure for each user his Federation ID value. It will be the
link between the SAML assertion coming from LemonLDAP::NG (the IdP) and
a given user in Salesforce. Here, the mail has been chosen as the user
Name ID.

[image: image3]

Once this is completed, click to export the Salesforce metadata and
import them into LemonLDAP::NG, into the declaration of the Salesforce
Service Provider.

See
Register partner Service Provider on LemonLDAP::NG
configuration chapter.

SAP

[image: SAP]

HTTP header

Read the following documentation:
http://help.sap.com/saphelp_nw70/helpdata/en/d0/a3d940c2653126e10000000a1550b0/frameset.htm

SAML

Read the following documentation:
https://help.sap.com/saphelp_nw70/helpdata/en/94/695b3ebd564644e10000000a114084/content.htm

simpleSAMLphp

[image: image0]

Presentation

simpleSAMLphp [https://simplesamlphp.org/] is an identity/service
provider written in PHP. It supports a lot of protocols like CAS, OpenID
and SAML.

This documentation explains how to interconnect LemonLDAP::NG and
simpleSAMLphp using SAML 2.0 protocol.

Pre-requisites

simpleSAMLphp

You need to install the
software [https://simplesamlphp.org/docs/stable/simplesamlphp-install].
If using Debian, just do:

apt-get install simplesamlphp

We suppose that configuration is done in /etc/simplesamlphp and that
simpleSAMLphp is accessible at http://localhost/simplesamlphp.

To be able to sign SAML messages, you need to create a certificate.
First set where certificates are stored:

vi /etc/simplesamlphp/config.php

'certdir' => '/etc/simplesamlphp/certs/',

Create directory and generate the certificate

mkdir /etc/simplesamlphp/certs/
cd /etc/simplesamlphp/certs/
openssl req -newkey rsa:2048 -new -x509 -days 3652 -nodes -out saml.crt -keyout saml.pem

Then associate this certificate to the default SP:

vi /etc/simplesamlphp/authsources.php

'default-sp' => array(
 'saml:SP',
 'privatekey' => 'saml.pem',
 'certificate' => 'saml.crt',

LemonLDAP::NG

You need to configure SAML Service. Be sure to
convert public key in a certificate, as described in the
security chapter as simpleSAMLphp can’t use the
public key.

simpleSAMLphp as Service Provider

We suppose you configured LemonLDAP::NG as
SAML Identity Provider and want to use simpleSAMLphp
as Service Provider.

In LL::NG Manager, create an new SP and load simpleSAMLphp metadata
through URL (by default:
http://localhost/simplesamlphp/module.php/saml/sp/metadata.php/default-sp):

[image: image1]

Then set some attributes that will be sent to simpleSAMLphp:

[image: image2]

Tip

Set Mandatory to On to force attributes in
authentication response.

You can also force all signatures:

[image: image3]

On simpleSAMLphp side, use the metadata converter (by default:
http://localhost/simplesamlphp/admin/metadata-converter.php) to convert
LL::NG metadata (by default: http://auth.example.com/saml/metadata) into
internal PHP representation. Copy the saml20-idp-remote content:

vi /etc/simplesamlphp/metadata/saml20-idp-remote.php

<?php
$metadata['http://auth.example.com/saml/metadata'] = array (
 'entityid' => 'http://auth.example.com/saml/metadata',
...
 // Add this option to force SLO requests signature
 'sign.logout' => true,
);
?>

Tip

Don’t forget PHP start and end tag to have a valid PHP
file.

All is ready, you can now test the authentication (by default:
http://localhost/simplesamlphp/module.php/core/authenticate.php). You
should see something like that:

[image: image4]

simpleSAMLphp as Identity Provider

We suppose you configured LemonLDAP::NG as
SAML Service Provider and want to use simpleSAMLphp
as Identity Provider.

First, you need to activate IDP feature in simpleSAMLphp:

vi /etc/simplesamlphp/config.php

'enable.saml20-idp' => true,

And create a default IDP configuration:

vi /etc/simplesamlphp/metadata/saml20-idp-hosted.php

<?php
$metadata['__DYNAMIC:1__'] = array(
 /*
 * The hostname for this IdP. This makes it possible to run multiple
 * IdPs from the same configuration. '__DEFAULT__' means that this one
 * should be used by default.
 */
 'host' => '__DEFAULT__',

 /*
 * The private key and certificate to use when signing responses.
 * These are stored in the cert-directory.
 */
 'privatekey' => 'saml.pem',
 'certificate' => 'saml.crt',

 /*
 * The authentication source which should be used to authenticate the
 * user. This must match one of the entries in config/authsources.php.
 */
 'auth' => 'admin',
 // Sign SLO messages
 'sign.logout' => true,
);
?>

Attention

You need to configure your own certificates and
authentication scheme

Now in LL::NG Manager, create a new IDP and import metadata with URL (by
default: http://localhost/simplesamlphp/saml2/idp/metadata.php):

[image: image5]

List attributes you want to collect:

[image: image6]

Tip

You can keep Mandatory to Off to not fail if attribute
is not sent by IDP

And activate all signatures:

[image: image7]

To finish, you need to declare LL::NG SP in simpleSAMLphp. Use the
metadata converter (by default:
http://localhost/simplesamlphp/admin/metadata-converter.php) to convert
LL::NG metadata (by default: http://auth.example.com/saml/metadata) into
internal PHP representation. Copy the saml20-sp-remote content:

vi /etc/simplesamlphp/metadata/saml20-sp-remote.php

<?php
$metadata['http://auth.example.com/saml/metadata'] = array (
 'entityid' => 'http://auth.example.com/saml/metadata',
...
);
?>

Tip

Don’t forget PHP start and end tag to have a valid PHP
file.

All is ready, you can now test the authentication from LL::NG portal.

Spring Security (ACEGI)

[image: image0]

Presentation

Spring
Security [http://static.springsource.org/spring-security/site/] is
the new ACEGI name. This is a well known security framework for J2EE
applications.

Spring Security provides a default pre-authentication mechanism that
can be used to connect your J2EE application to LL::NG.

Configuration

You can find all suitable information here:
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/preauth.html

To summarize, to get the user connected through the Auth-User HTTP
Header, use this Sping Security configuration:

<bean id="LemonLDAPNGFilter" class=
"org.springframework.security.web.authentication.preauth.header.RequestHeaderPreAuthenticatedProcessingFilter">
 <security:custom-filter position="PRE_AUTH_FILTER" />
 <property name="principalRequestHeader" value="Auth-User"/>
 <property name="authenticationManager" ref="authenticationManager" />
</bean>

<bean id="preauthAuthProvider" class="org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthenticationProvider">
 <security:custom-authentication-provider />
 <property name="preAuthenticatedUserDetailsService">
 <bean id="userDetailsServiceWrapper" class="org.springframework.security.userdetails.UserDetailsByNameServiceWrapper">
 <property name="userDetailsService" ref="userDetailsService"/>
 </bean>
 </property>
</bean>

<security:authentication-manager alias="authenticationManager" />

PHP (Symfony)

[image: image0]

Presentation

Symfony [https://symfony.com/] is the well-known PHP framework. It
is intended to ease the development of PHP applications.

Symfony provides many methods conventions to authenticate users (basic,
ldap,…) and to load external user sources (ldap, database). The method
presented here relies on the “remote_user” method. (in security
firewall)

Configuration

Follow these step to protect your application using the “REMOTE_USER”
HTTP header.

	Adapt the app/config/security.yml configuration file as below:

security:

 encoders:
 AppBundle\Security\User\HeaderUser: plaintext

 providers:
 header:
 id: AppBundle\Security\User\HeaderUserProvider

 firewalls:
 dev:
 pattern: ^/(_(profiler|wdt)|css|images|js)/
 security: false

 main:
 pattern: ^/
 remote_user:
 user: HTTP_REMOTE_USER
 provider: header

	encoders : define a password hashing scheme (useless in our case, but
the parameter is mandatory)

	providers : define the user providers (even virtual)

	remote_user : define the authentication method to “assume the user is
already authenticated and get an http variable to know his username”

	user : define the HTTP header containing the username

	provider : references the previously defined provider owning the user
data (in our scenario, a virtual)

	Define a “header user” class

Create the file src/AppBundle/Security/User/HeaderUser.php :

<?php

// src/Security/User/HeaderUser.php
namespace AppBundle\Security\User;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\EquatableInterface;

class HeaderUser implements UserInterface, EquatableInterface
{
 private $username;
 private $password;
 private $salt;
 private $roles;

 public function __construct($username, $password, $salt, array $roles)
 {
 $this->username = $username;
 $this->password = $password;
 $this->salt = $salt;
 $this->roles = $roles;
 }

 public function getRoles()
 {
 return $this->roles;
 }

 public function getPassword()
 {
 return $this->password;
 }

 public function getSalt()
 {
 return $this->salt;
 }
 public function getUsername()
 {
 return $this->username;
 }

 public function eraseCredentials()
 {
 }

 public function isEqualTo(UserInterface $user)
 {
 if (!$user instanceof HeaderUser) {
 return false;
 }

 if ($this->username !== $user->getUsername()) {
 return false;
 }

 //if ($this->password !== $user->getPassword()) {
 // return false;
 //}

 return true;
 }
}
?>

	Define a “header user provider” class relying on the previous class

Create the file src/AppBundle/Security/User/HeaderUserProvider.php :

<?php

// src/Security/User/HeaderUserProvider.php
namespace AppBundle\Security\User;

use AppBundle\Security\User\HeaderUser;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;

class HeaderUserProvider implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {

 if ($username) {

 $password = "dummy";
 $salt = "";
 $roles = array('ROLE_USER');

 return new HeaderUser($username, $password, $salt, $roles);
 }

 throw new UsernameNotFoundException(
 sprintf('Username "%s" does not exist.', $username)
);
 }

 public function refreshUser(UserInterface $user)
 {
 if (!$user instanceof HeaderUser) {
 throw new UnsupportedUserException(
 sprintf('Instances of "%s" are not supported.', get_class($user))
);
 }

 return $this->loadUserByUsername($user->getUsername());
 }

 public function supportsClass($class)
 {
 return HeaderUser::class === $class;
 }
}

?>

References

	http://symfony.com/doc/current/security/pre_authenticated.html#remote-user-based-authentication

	https://symfony.com/doc/current/security/custom_provider.html

Sympa

[image: image0]

Presentation

Sympa [http://www.sympa.org] is a mailing list manager.

To configure SSO with Sympa, use Magic authentication: a special SSO
URL is protected by LL::NG, Sympa will display a button for users who
wants to use this feature.

Tip

Since version 1.9 of LLNG, old Auto-Login feature has been
removed since it works only with Sympa-5 which has been deprecated

Configuration

Sympa configuration

Edit the file “auth.conf”, for example:

vi /etc/sympa/auth.conf

And fill it:

generic_sso
 service_name Centralized auth service
 service_id lemonldapng
 email_http_header HTTP_MAIL
 netid_http_header HTTP_AUTH_USER
 internal_email_by_netid 1
 logout_url http://sympa.example.com/wws/logout

Tip

You can also disable internal Sympa authentication to keep
only LemonLDAP::NG by removing user_table paragraph

Note that if you use FastCGI, you must restart Apache to enable changes.

You can also use <portal>?logout=1 as logout_url to remove LemonLDAP::NG
session when “disconnect” is chosen.

Sympa virtual host

Configure Sympa virtual host like other
protected virtual host but protect only magic
authentication URL.

Tip

The location URL end is based on the service_id defined in
Sympa apache configuration.

	For Apache:

<VirtualHost *:80>
 ServerName sympa.example.com

 <Location /wws/sso_login/lemonldapng>
 PerlHeaderParserHandler Lemonldap::NG::Handler
 </Location>

 ...

</VirtualHost>

	For Nginx:

server {
 listen 80;
 server_name sympa.example.com;
 root /path/to/application;
 # Internal authentication request
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /llauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }

 # Client requests
 location /wws/sso_login/lemonldapng {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 try_files $uri $uri/ =404;

 ...

 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Sympa virtual host in Manager

Go to the Manager and create a new virtual host
for Sympa.

Configure the access rules and define
the following headers:

	Auth-User

	Mail

Apache Tomcat

[image: image0]

Attention

The Tomcat Valve is only available for tomcat 5.5 or
greater.

Presentation

Apache Tomcat [http://tomcat.apache.org/] is an open source software
implementation of the Java Servlet and JavaServer Pages technologies.

As J2EE servlet container, Tomcat provides standard security feature,
like authentication: the application deployed in Tomcat can delegate its
authentication to Tomcat.

By default, Tomcat provides a file called users.xml to manage
authentication:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <user username="tomcat" password="tomcat" roles="tomcat"/>
 <user username="role1" password="tomcat" roles="role1"/>
 <user username="both" password="tomcat" roles="tomcat,role1"/>
</tomcat-users>

LL::NG provides a valve that will check an HTTP header to set the authenticated user on
the J2EE container.

Compilation

The sources are available at https://github.com/LemonLDAPNG/lemonldap-valve-tomcat

Required :

	ant

	jre > 1.4

	tomcat >= 5.5

Configure your tomcat home in build.properties files.

Attention

Be careful for Windows user, path must contains “/”.
Example:

c:/my hardisk/tomcat/

Next run ant command:

ant

ValveLemonLDAPNG.jar is created under /dist directory.

Installation

Copy ValveLemonLDAPNG.jar in <TOMCAT_HOME>/server/lib:

cp ValveLemonLDAPNG.jar server/lib/

Tip

If needed, you can
recompile the valve from the sources.

Configuration

Add on your server.xml file a new valve entry like this (in host
section):

<Valve className="org.lemonLDAPNG.SSOValve" userKey="AUTH-USER" roleKey="AUTH-ROLE" roleSeparator="," allows="127.0.0.1"/>

Configure attributes:

	userKey: key in the HTTP header containing user login.

	roleKey: key in the HTTP header containing roles. If LL::NG send
some roles split by some commas, configure roleSeparator.

	roleSeparator (optional): role values separator.

	allows (optional): Define allowed remote IP (use “,” separator
for multiple IP). Just set the LL::NG Handler IP on this attribute in
order to add more security. If this attribute is missed all hosts are
allowed.

	passThrough (optional): Allow anonymous access or not. When it
takes “false”, HTTP headers have to be sent by LL::NG to make
authentication. So, if the user is not recognized or HTTP headers not
present, a 403 error is sent.

Tip

For debugging, this valve can print some helpful information
in debug level. See how configure logging in
Tomcat [http://tomcat.apache.org/tomcat-5.5-doc/logging.html] .

Wekan

[image: image0]

Presentation

Wekan is an open-source Kanban, similar to trello.

See the official Wekan website [https://wekan.github.io/] for a
complete presentation.

It feature an oauth2 login feature that work with LemonLDAP::NG

Configuring Wekan

Wekan is mostly configured with environement variables, you need to set
theses :

	OAUTH2_ENABLED: TRUE

	OAUTH2_CLIENT_ID: ClientID

	OAUTH2_SECRET: Secret

	OAUTH2_SERVER_URL: https://auth.example.com/

	OAUTH2_AUTH_ENDPOINT: oauth2/authorize

	OAUTH2_USERINFO_ENDPOINT: oauth2/userinfo

	OAUTH2_TOKEN_ENDPOINT: oauth2/token

	OAUTH2_ID_MAP: sub

	OAUTH2_USERNAME_MAP: sub

	OAUTH2_FULLNAME_MAP: name

	OAUTH2_EMAIL_MAP: email

Danger

Be careful to the / in server_url and endpoints, the
complete URL need to be valid, ie auth.example.com/ for url & oauth2/xxx
for endpoints, OR, auth.example.com & /oauth2/xxx for endpoints.

Configuring LemonLDAP

We now have to configure LemonLDAP::NG to recognize Wekan as a valid
OAuth2 relaying party and send it the information it needs to recognize
a user.

Add a new OpenID Connect relaying party
with the following parameters:

	Client ID: the same you set in Wekan configuration (same as OAUTH2_CLIENT_ID)

	Client Secret: the same you set in Wekan configuration (same as OAUTH2_SECRET)

	
	Add the following exported attributes
	
	name: session attribute containing the user’s full name

	email: session attribute containing the user’s email or _singleMail

_singleMail Macro

Danger

OIDC login fails when an user as a multi-valued email
attribute, this need to be fixed on wekan’s side, we can bypass that by
telling lemonldap to only send one email

Create a new macro, name it (_singleMail is an example), the macro
should contain (split(/; /,$mail))[1]

Wiki.js

[image: image0]

Presentation

Wiki.js is an open-source wiki.

See the official Wiki.js website [https://js.wiki/] for a
complete presentation.

It feature an OpenID Connect login that work with LemonLDAP::NG.

Configuring Wiki.js

Connect to your wiki.js instance with an Admin user, in the admin panel, go to “Authentication”.

Click on “Add Strategy” and Choose “Generic OpenID Connect / OAuth2”.

Choose a Display Name.

Define a Client ID and a Client Secret.

	Authorization Endpoint URL : https://auth.example.com/oauth2/authorize

	Token Endpoint URL : https://auth.example.com/oauth2/token

	User info Endpoint URL : https://auth.example.com/oauth2/userinfo

	Issuer : https://auth.example.com

	Logout URL : https://auth.example.com/oauth2/logout

Make a note of the “Callback URL” and the bottom of the screen and save the configuration.

Configuring LemonLDAP

We now have to configure LemonLDAP::NG to recognize wiki.js as a valid OIDC relying party.

Add a new OpenID Connect relying party
with the following parameters (Options -> Basic) :

	Client ID: the same you set in Wiki.js configuration.

	Client Secret: the same you set in Wiki.js configuration.

	Allowed redirection addresses for login: The “Callback URL” defined in wiki.js.

Portal with internal CA

Danger

OIDC login fails when your LemonLDAP portal doesn’t use a publicaly recognized certificate (Internal Corporate CA), this is because nodejs use it’s own keystore.
You’ll need to pass “NODE_EXTRA_CA_CERTS=” to your wiki installation. If done in docker you will have to create a new image from the official one, add your CA certificates into it, and use the env variable to use it in your wiki.js container.

Wordpress

[image: image0]

Presentation

Wordpress [https://wordpress.org/] is a famous tool to create
websites.

A lot of authentication plugins are available. We propose here to use
CAS protocol and WP
Cassify [https://wordpress.org/plugins/wp-cassify/] plugin.

CAS

Plugin installation

Go in Wordpress admin and install WP
Cassify [https://wordpress.org/plugins/wp-cassify/] plugin.

Plugin configuration

The full documentation is available on https://wpcassify.wordpress.com/

General settings

Configure CAS server and CAS version:

	CAS Server base url : https://auth.example.com/cas/

	CAS Version protocol: 2

Other options are correct by default.

User Roles Settings

You can assign WP Roles depending on values sent by CAS.

The rules syntax is quite special, you can use it or you can just define
macros on LL::NG side and send them through CAS to keep simple rules on
WP side.

For example create a macro role_wordpress_admin which contains 1
if the user is admin on WP, and send it in CAS attributes.

Then create this rule on WP side:

administrator|(CAS{role_wordpress_admin} -EQ "1")

X-Wiki

[image: image0]

Presentation

XWiki is a free wiki software platform written in Java with a design
emphasis on extensibility. XWiki is an enterprise wiki. It includes
WYSIWYG editing, OpenDocument based document import/export, semantic
annotations and tagging, and advanced permissions management.

Configuration

The integration with LL::NG is the following:

	LemonLDAP::NG is configured as a reverse-proxy for xwiki

	Xwiki is configured to accept HTTP Headers

Xwiki virtual host

Apache

You will configure Xwiki virtual host like other
protected virtual host.

This is an example, with https and speaking to xwiki via AJP.

<VirtualHost *:80>
 ServerName wiki.acme.fr
 Redirect / https://wiki.acme.fr/
</VirtualHost>

<VirtualHost *:443>
 ServerName wiki.acme.fr

 SSLEngine On
 SSLCertificateFile /etc/pki/tls/certs/wildcard.acme.fr.crt
 SSLCertificateKeyFile /etc/pki/tls/certs/wildcard.acme.fr.key
 SSLCertificateChainFile /etc/pki/tls/certs/CLASS_2_ACME_CA.crt
 SSLOptions +StdEnvVars
 SSLProtocol all -SSLv3 -TLSv1 -TLSv1.1
 SSLCipherSuite ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
 SSLHonorCipherOrder on
 SSLCompression off

 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

 RewriteEngine on
 RewriteRule ^/$ /xwiki/ [R]

 ProxyPreserveHost On
 ProxyRequests On

 ProxyPass / ajp://192.168.11.130:8009/
 ProxyPassReverse / ajp://192.168.11.130:8009/

 ErrorLog /var/log/httpd/wiki_error.log
 CustomLog /var/log/httpd/wiki_access.log combined
</VirtualHost>

Xwiki virtual host in Manager

Go to the Manager and create a new virtual host
for Xwiki.

Configure the access rules.

Configure the headers:

	remote_user: $uid

	remote_groups: encode_base64($groups,’’)

Xwiki Configuration

xwiki.authentication.authclass=org.xwiki.contrib.authentication.XWikiTrustedAuthenticator
xwiki.authentication.trusted.adapterHint=headers
xwiki.authentication.trusted.auth_field=remote_user
xwiki.authentication.trusted.group_field=remote_groups
xwiki.authentication.trusted.logout_url=https://auth.acme.fr/#logout

Zimbra

[image: image0]

Presentation

Zimbra [http://www.zimbra.com/] is open source server software for
email and collaboration - email, group calendar, contacts, instant
messaging, file storage and web document management. The Zimbra email
and calendar server is available for Linux, Mac OS X and virtualization
platforms. Zimbra syncs to smartphones (iPhone, BlackBerry) and desktop
clients like Outlook and Thunderbird. Zimbra also features archiving and
discovery for compliance. Zimbra can be deployed on-premises or as a
hosted email solution.

Zimbra use a specific preauthentication
protocol [http://wiki.zimbra.com/index.php?title=Preauth] to provide
SSO on its application. This protocol is implemented in an LL::NG
specific Handler.

Tip

Zimbra can also be connected to LL::NG via
SAML protocol (see Zimbra
blog [http://blog.zimbra.com/blog/archives/2010/06/using-saml-assertions-to-access-zimbra.html]).

Configuration

The integration with LL::NG is the following:

	A special URL is declared in application menu (like
http://zimbra.example.com/zimbrasso)

	A Zimbra Handler is called

	Handler build the preauth request and redirect user on Zimbra preauth
URL

	Then Zimbra do the SSO by setting a cookie in user’s browser

Zimbra preauth key

You need to get a preauth key from Zimbra server.

See how to do
this [http://wiki.zimbra.com/index.php?title=Preauth#Preparing_a_domain_for_preauth]
on Zimbra wiki.

Zimbra application in menu

Choose for example http://zimbra.example.com/zimbrasso as SSO URL and
set it in application menu.

Zimbra virtual host

You just have to set “Type: ZimbraPreAuth” in virtualhost options and
reload configuration in this handler.

Zimbra Handler parameters

Zimbra parameters are the following:

	Preauthentication key: the one you grab from zmprov command

	Account session key: session field used as Zimbra user account
(by default: uid)

	Account type: for Zimbra this can be name, id or foreignKey (by
default: id)

	Preauthentication URL: Zimbra preauthentication URL, either with
full URL (ex: http://zimbra.lan/service/preauth), either only with
path (ex: /service/preauth) (by default: /service/preauth)

	Local SSO URL pattern: regular expression to match the SSO URL
(by default: ^/zimbrasso$)

Attention

Due to Handler API change in 1.9, you need to set these
attributes in lemonldap-ng.ini and not in Manager, for example:

[handler]
zimbraPreAuthKey = XXXX
zimbraAccountKey = uid
zimbraBy =id
zimbraUrl = /service/preauth
zimbraSsoUrl = ^/zimbrasso$

Multi-domain issues

Some organizations have multiple zimbra domains:

	foo@domain1.com

	bar@domain2.com

However, the zimbra preauth key is:

	generated for one zimbra domain only

	declared globally for every LemonLDAP::NG virtual hosts.

Thus, if domain1 has been registered on LemonLDAP::NG, user bar won’t be
able to connect to zimbra because preauth key is different. If you
accept to have the same preauth key for all zimbra domains, you can set
the same preauth key using this procedure:

We are going to use the first key (the domain1 one) for every domain. On
Zimbra machine, generate the keys:

zmprov generateDomainPreAuthKey domain1.com
preAuthKey: 4e2816f16c44fab20ecdee39fb850c3b0bb54d03f1d8e073aaea376a4f407f0c

zmprov generateDomainPreAuthKey domain2.com
preAuthKey: 6b7ead4bd425836e8cf0079cd6c1a05acc127acd07c8ee4b61023e19250e929c

Then, connect to your zimbra LDAP server with your favourite tool
(Apache Directory Studio can do the job). Take care to connect with the
super admin and password account.

	Expand the branch “dc=com”, then click the “dc=domain1” branch

	Get the value of zimbraPreAuthKey

	Expand the branch “dc=com”, then click the “dc=domain2” branch

	Replace the value of zimbraPreAuthKey you have previously copied

	Wait for all Zimbra servers to update, or restart the zcs server

That’s it, all zimbra servers will be able to decipher the hmac because
they share the same key!

Advanced features

	SMTP server setup

	Notifications system

	Store user password in session

	Cross Domain Authentication

	RBAC model

	Custom functions

	Extended functions

	Reset password by mail

	Register a new account

	Logout forward

	Secure Token Handler

	AuthBasic Handler

	SSO as a service (SSOaaS)

	Handling server webservice calls

	Safe jail

	Assignment test

	Login History

	FastCGI support

	LemonLDAP::NG FastCGI server

	Advanced PSGI usage

	Ignore some manager tests

	Rules examples

	Parameter list

SMTP server setup

Go in General Parameters > Advanced Parameters > SMTP:

	Session key containing mail address: choose which session field contains
mail address

	SMTP Server: IP or hostname of the SMTP server

	SMTP Port: Port of the SMTP server

	SMTP User: SMTP user if authentication is required

	SMTP Password: SMTP password if authentication is required

	SSL/TLS protocol and SSL/TLS options: Here you can enable SMTPS or
startTLS. A list of possible options can be found in the IO::Socket::SSL
documentation [https://metacpan.org/pod/IO::Socket::SSL].

Tip

	If no SMTP server is configured, the mail will be sent via the local
sendmail program. Else, Net::SMTP module is required to use the SMTP
server

	The SMTP server value can hold the port, for example:
mail.example.com:25

Warning

	Older versions of the Email::Sender library have limitations when it comes
to SMTPS or STARTTLS support. Versions lower than 1.300027 will not be
able to check the remote server certificate or use custom IO::Socket::SSL
options.

	Mail headers:

	Mail sender: address seen in the “From” field (default:
noreply@[DOMAIN])

	Reply address: address seen in the “Reply-To” field

	charset: Charset used for the body of the mail (default:
utf-8)

Testing your email setup

New in version 2.0.10.

You can test your email setup in the General Parameters > Advanced
Parameters > SMTP page by using the Send test email button in the
manager.

Tip

You need to save your SMTP configuration before you can test it

New in version 2.0.10.

You can also test your email setup using the test-email command in the CLI

lemonldap-ng-cli test-email dwho@badwolf.org

Notifications system

LemonLDAP::NG can be used to notify some messages to users. If a user
has got some messages, they will be displayed when he access to the
portal. If a message contains some check boxes, the user has to check
all of them else he can not access to the portal and retrieves his
session cookie.

A notification explorer is available in Manager, and notifications can
be set for all users, with possibility to use display conditions. When
the user accept the notification, notification reference is stored in
his persistent session.

Installation

Activation

To activate notifications system:

Go to Manager General Parameters » Plugins » Notifications » Activation

or in lemonldap-ng.ini [portal] section:

[portal]
notification = 1

Explorer

Notifications explorer allows users to see and display theirs accepted
notifications. Disable by default, you just have to activate it in the
Manager (General Parameters » Plugins » Notifications »
Explorer)

or in lemonldap-ng.ini [portal] section:

[portal]
notificationsExplorer = 1

By default, just the three last notifications are displayed. You can
modify this by editing lemonldap-ng.ini [portal] section:

[portal]
notificationsMaxRetrieve = 3

Usage

When enabled, /mynotifications URL path is handled by this plugin.

Known issue

An XML document can contain several notifications messages. Just the
first one can be searched and displayed!

Attention

Listed notifications are extracted from users
persistent session (notification reference and accepted date). ONLY the
notifications explorer can found in notifications backend are available
to be displayed. Notifications content (title, subtitle and so on…) is
not stored into persistent session.

Storage

By default, notifications will be stored in the same database as
configuration:

	if you use “File” system and your “dirName” is set to
/usr/local/lemonldap-ng/conf/, the notifications will be stored in
/usr/local/lemonldap-ng/notifications/

	if you use “CDBI” or “RDBI” system, the notifications will be stored
in the same database as configuration and in a table named
“notifications”.

	if you use “LDAP” system, the notifications will be stored in the
same directory as configuration and in a branch named
“notifications”.

You can change default parameters using the “notificationStorage” and
“notificationStorageOptions” parameters with the same syntax as
configuration storage parameters. To do this in Manager, go in General
Parameters > Plugins > Notifications.

File

Parameters for File backend are the same as
File configuration backend.

Attention

You need to create yourself the directory and set write
access to Apache user. For example:

mkdir /usr/local/lemonldap-ng/notifications/
chown www-data /usr/local/lemonldap-ng/notifications/

Tip

The file name default separator is _, this can be a
problem if you register notifications for users having _ in their
login. You can change the separator with the fileNameSeparator
option, and set another value, for example @.

To summary available options:

	dirName: directory where notifications are stored.

	fileNameSeparator: file name separator.

DBI

Parameters for DBI backend are the same as
DBI configuration backend.

Attention

You have to create the table by yourself:

CREATE TABLE notifications (
 date datetime NOT NULL,
 uid varchar(255) NOT NULL,
 ref varchar(255) NOT NULL,
 cond varchar(255) DEFAULT NULL,
 xml longblob NOT NULL,
 done datetime DEFAULT NULL,
 PRIMARY KEY (date, uid,ref)
)

To summary available options:

	dbiChain: DBI connection.

	dbiUser: DBI user.

	dbiPassword: DBI password.

	dbiTable: Notifications table name.

LDAP

Parameters for LDAP backend are the same as
LDAP configuration backend.

Attention

You have to create the branch by yourself

To summary available options:

	ldapServer: LDAP URL.

	ldapBindDN: LDAP user.

	ldapBindPassword: LDAP password.

	ldapConfBase: Notifications branch DN.

Note

DBI configuration example:

notificationStorage = DBI
notificationStorageOptions={ \
 'dbiChain' => 'DBI:Pg:dbname=llng;host=mabdd;port=5432', \
 'dbiTable' => 'notifications', \
 'dbiUser' => 'user', \
 'dbiPassword' => 'qwerty', \
 'type' => 'CDBI', \
}

Wildcard

The notifications module uses a wildcard to manage notifications for all
users. The default value of this wildcard is allusers, but you can
change it if allusers is a known identifier in your system.

To change it, go in General Parameters > Plugins >
Notifications > Wildcard for all users, and set for example
alluserscustom.

Then creating a notification for alluserscustom will display the
notification for all users.

Using notification system

Attention

Since version 2.0, notifications are now stored in JSON
format. If you want to keep old format, select “use old format” in the
Manager. Note that notification server depends on chosen format: REST
for JSON and SOAP for XML.

Notification format

Notifications are JSON (default) or XML files containing:

	<notification> element(s) :

	Required attributes:

	date: creation date (format YYYY-MM-DD WITHOUT time!)

	ref: a reference that can be used later to know what has been
notified and when (Avoid _ character)

	uid: the user login (it must correspond to the attribute set in
whatToTrace parameter, uid by default), or the wildcard string
(by default: allusers) if the notification should be
displayed for every user.

	Optional attributes:

	condition: condition to display the notification, can use all
session variables.

	Sub elements:

	<title>: title to display: will be inserted in HTML page
enclosed in <h2 class=”notifText”>…</h2>

	<subtitle>: subtitle to display: will be inserted in HTML page
enclosed in <h2 class=”notifText”>…</h2>

	<text>: paragraph to display: will be inserted in HTML page
enclosed in <p class=”notifText”>…</p>

	<check>: paragraph to display with a checkbox: will be inserted
in HTML page enclosed in <p class=”notifCheck”><input
type=”checkbox” />…</p>

Attention

All other elements will be removed including HTML
elements like .

Tip

One notification XML document can contain several
notifications messages.

Several notifications can be inserted with a single request by using an
array of JSON (Tested with an array of 10,000 elements)

Examples

JSON

[{
"uid": "foo",
"date": "2009-01-27",
"reference": "ABC",
"title": "You have new authorizations",
"subtitle": "Application 1",
"text": "You have been granted to access to appli-1",
An array is required to set multi checkboxes
"check": [
 "I agree",
 "Yes, I'm sure"
]
},
{
"uid": "bar",
"date": "2009-01-27",
"reference": "ABC",
"title": "You have new authorizations",
"subtitle": "Application 1",
"text": "You have been granted to access to appli-1",
"check": "I agree"
}] # No comma at the end

Tip

JSON format notifications are displayed sorted by date and
reference

XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>
<notification uid="foo.bar" date="2009-01-27" reference="ABC">
<title>You have new authorizations</title>
<subtitle>Application 1</subtitle>
<text>You have been granted to access to appli-1</text>
<subtitle>Application 2</subtitle>
<text>You have been granted to access to appli-2</text>
<subtitle>Acceptation</subtitle>
<check>I know that I can access to appli-1 </check>
<check>I know that I can access to appli-2 </check>
</notification>
<notification uid="allusers" date="2009-01-27" reference="disclaimer" condition="$ipAddr =~ /^192/">
<title>This is your first access on this system</title>
<text>Be a nice user and do not break it please.</text>
<check>Of course I am not evil!</check>
</notification>
</root>

Create new notifications with notifications explorer

In Manager, click on Notifications and then on the Create
button.

[image: image0]

Then fill all inputs to create the notification. Only the condition is
not mandatory.

When all is ok, click on Save.

Notification server

LemonLDAP::NG provides two notification servers : SOAP and REST
depending on format.

If enabled, the server URL is https://auth.your.domain/notifications.

Notification server provides three API to insert (POST), delete (DELETE)
or list (GET) notification(s).

Available options:

	Server: Enable/Disable notification server

	Default condition: Condition appended to ALL notifications
inserted by notification server (JSON format only)

	Notification parameters to send: Notifications parameters
returned by GET method

	HTTP methods: Enable/Disable HTTP methods

Attention

If notification server is enabled, you have to protect
this URL by using the web server because there is no authentication
required to use it.

Example:

REST/SOAP functions for insert/delete/list notifications (disabled by default)
<LocationMatch ^/(index\.fcgi/)?notifications>
 <IfVersion >= 2.3>
 Require ip 192.168.2.0/24
 </IfVersion>
 <IfVersion < 2.3>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.2.0/24
 </IfVersion>
</LocationMatch>

XML notifications through SOAP

If you use old XML format, new notifications can be inserted or deleted
by using SOAP request, once SOAP is activated:

* Insertion example in Perl

#!/usr/bin/perl

use SOAP::Lite;
use utf8;

my $lite = SOAP::Lite
 ->uri('urn:Lemonldap::NG::Common::PSGI::SOAPService')
 ->proxy('http://auth.example.com/notifications');

$r = $lite->newNotification(
'<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<root>
<notification uid="foo.bar" date="2009-01-27" reference="ABC">
<text> You have been granted to access to appli-1 </text>
<text> You have been granted to access to appli-2 </text>
<check> I know that I can access to appli-1 </check>
<check> I know that I can access to appli-2 </check>
</notification>
</root>
');

if ($r->fault) {
 print STDERR "SOAP Error: " . $r->fault->{faultstring};
}
else {
 my $res = $r->result();
 print "$res notification(s) have been inserted\n";
}

* Deletion example in Perl

#!/usr/bin/perl

use SOAP::Lite;
use utf8;

my $lite = SOAP::Lite
 ->uri('urn:Lemonldap::NG::Common::CGI::SOAPService')
 ->proxy('http://auth.example.com/index.pl/notification');

$r = $lite->deleteNotification('foo.bar', 'ABC');

if ($r->fault) {
 print STDERR "SOAP Error: " . $r->fault->{faultstring};
}
else {
 my $res = $r->result();
 print "$res notification(s) have been deleted\n";
}

JSON notifications through REST

Insertion example with REST API

Using JSON, you just have to POST json files.

For example with curl:

curl -X POST -H "Content-Type: application/json" -H "Accept: application/json" -d @notif.json http://auth.example.com/notifications

Deletion example with REST API

DELETE API is available with LLNG ≥ 2.0.6

For example with curl:

curl -X DELETE -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/<uid>/<reference>

List example with REST API

GET API is available with LLNG ≥ 2.0.6

For example with curl:

Retrieve 'wildcard' notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications

Retrieve all pending notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/_allPending_

Retrieve all existing notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/_allExisting_

Retrieve all <uid>'s notifications
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/<uid>

Retrieve <uid>/<reference> notification parameters
curl -X GET -H "Content-Type: application/json" -H "Accept: application/json" http://auth.example.com/notifications/<uid>/<reference>

Test notification

You’ve just to insert a notification and connect to the portal using the
same UID. You will be prompted.

[image: image1]

Try also to create a global notification (to the uid “allusers”), and
connect with any user, the message will be prompted.

Store user password in session

Presentation

Password is not a common attribute. Indeed, in most of the cases, it is
not stored in clear text in the backend (LDAP or database).

So, to keep user password in session, you cannot just export the
password variable in session. To bypass this, LL::NG can remember what
password was given by user on authentication phase.

Attention

	As this may be a security hole, password store in session is not
activated by default

	This mechanism can only work with authentication backends using a
login/password form (LDAP, DBI, …)

Configuration

Go in Manager, General Parameters » ‘’Sessions ‘’ »
Store user password in session data and set to On.

Usage

User password is now available in $_password variable. For example,
to send it in an header:

Auth-Password => $_password

Tip

For security reasons, the password is not shown in sessions
explorer.

Cross Domain Authentication

Presentation

Cross Domain Authentication (CDA)

Configuration

Go in Manager, General Parameters » Cookies »
Multiple domains and set to On.

To use this feature only locally, edit lemonldap-ng.ini in section
[all]:

[all]
cda = 1

Attention

If your handler is being served by Nginx, you have to
uncomment the following lines in your nginx configuration file:

If CDA is used, uncomment this
auth_request_set $cookie_value $upstream_http_set_cookie;
add_header Set-Cookie $cookie_value;

Handlers

Choose “CDA” as type for each virtualHost concerned by CDA (ie not in
main domain).

RBAC model

Presentation

RBAC [http://en.wikipedia.org/wiki/Role-based_access_control] stands
for Role Based Access Control. It means that you manage authorizations
to access applications by checking the role(s) of the user, and provide
this role to the application.

As the definition of access rules is free in LemonLDAP::NG, you can
implement an RBAC model if you need.

Configuration

Roles as simple values of a user attribute

Imagine you’ve set your directory schema to store roles as values of an
attribute of the user, for example “description”. This is simple because
you can send the role to the application by creating a HTTP header (for
example Auth-Role) with the concatenated values (‘;’ is the
concatenation string):

Auth-Roles => $description

If the user has these values inside its entry:

description: user
description: admin

Then you got this value inside the Auth-Roles header:

user; admin

Roles as entries in the directory

Now imagine the following DIT:

	dc=example,dc=com

	ou=users

	uid=coudot

	ou=roles

	ou=aaa

	cn=admin

	cn=user

	ou=bbb

	cn=admin

	cn=user

Roles are entries, below branches representing applications. We can use
the standard LDAP objectClass organizationalRole to maintain roles,
for example:

dn: cn=admin,ou=aaa,ou=roles,dc=example,dc=com
objectClass: organizationalRole
objectClass: top
cn: admin
ou: aaa
roleOccupant: uid=coudot,ou=users,dc=example,dc=com

A user is attached to a role if its DN is in roleOccupant attribute.
We add the attribute ou to allow LL::NG to know which application is
concerned by this role.

So imagine the user coudot is “user” on application “BBB” and “admin” on
application “AAA”.

Gather roles in session

Use the LDAP group configuration to store roles
as groups in the user session:

	Base: ou=roles,dc=example,dc=com

	Object class: organizationalRole

	Target attribute: roleOccupant

	Searched attributes: cn ou

Restrict access to application

We configure LL::NG to authorize people on an application only if they
have a role on it. For this, we use the $hGroups variable.

	For application AAA:

default => groupMatch($hGroups, 'ou', 'aaa')

	For application BBB:

default => groupMatch($hGroups, 'ou', 'bbb')

Send role to application

It is done by creating the correct HTTP header:

	For application AAA:

Auth-Roles => ((grep{/aaa/} split(';',$groups))[0] =~ /([a-zA-Z]+?)/)[0]

	For application BBB:

Auth-Roles => ((grep{/bbb/} split(';',$groups))[0] =~ /([a-zA-Z]+?)/)[0]

Custom functions

Custom functions allow one to extend LL::NG, they can be used in
Headers,
Rules or
form replay data. Two actions are needed:

	declare them in LLNG configuration

	load the relevant code

Implementation

Your perl custom function must be declared on appropriate server when
separating :

portal type : declare custom function here when using it in rules,
macros, menu

reverse-proxy type : declare custom function here when using it in
headers

Write custom functions library

Create your Perl module with custom functions. You can name your module
as you want, for example SSOExtensions.pm:

vi /path/to/SSOExtensions.pm

package SSOExtensions;

sub function1 {
 my (@args) = @_;

 # Your nice code here
 return $result;
}

sub function2 {
 return $_[0];
}

1;

Import custom functions in LemonLDAP::NG

Load relevant code in handler server

New method

Just declare files or Perl module that must be loaded:

[all]
require = /path/to/functions.pl, /path/to/SSOExtensions.pm
OR
require = SSOExtensions::function1, SSOExtensions::function2
; Prevent Portal to crash if Perl module is not found
;requireDontDie = 1

Old method

Danger

This method is available but unusable by Portal under
Apache. So if your rule may be used by the menu, use the new
method.

Apache

Your module has to be loaded by Apache (for example after Handler load):

Perl environment
PerlRequire Lemonldap::NG::Handler
PerlRequire /path/to/SSOExtensions.pm
PerlOptions +GlobalRequest

FastCGI server (Nginx)

You’ve just to incicate to LLNG FastCGI server the
file to read using either -f option or CUSTOM_FUNCTIONS_FILE
environment variable. Using packages, you just have to modify your
/etc/default/llng-fastcgi-server (or
/etc/default/lemonldap-ng-fastcgi-server) file:

Number of process (default: 7)
#NPROC = 7

Unix socket to listen to
SOCKET=/var/run/llng-fastcgi-server/llng-fastcgi.sock

Pid file
PID=/var/run/llng-fastcgi-server/llng-fastcgi-server.pid

User and GROUP
USER=www-data
GROUP=www-data

Custom functions file
CUSTOM_FUNCTIONS_FILE=/path/to/SSOExtensions.pm

Declare custom functions

Go in Manager, General Parameters » Advanced Parameters »
Custom functions and set:

SSOExtensions::function1 SSOExtensions::function2

Attention

If your function is not compliant with
Safe jail, you will need to disable the jail.

Use it

You can now use your function in a macro, an header or an access rule,
for example:

SSOExtensions::function1($uid, $ENV{REMOTE_ADDR})

Extended functions

Presentation

When writing rules and headers, you can
use Perl expressions that will be evaluated in a jail, to prevent bad
code execution.

This is also true for:

	Menu modules activation rules

	Form replay data

	Macros

	Issuer databases use rules

	etc.

Inside this jail, you can access to:

	all session values and CGI environment variables (through $ENV{<HTTP_NAME>})

	Core Perl subroutines (split, pop, map, etc.)

	Custom functions

	The encode_base64 [http://perldoc.perl.org/MIME/Base64.html] subroutine

	Information about current request

	Extended functions:

	basic

	checkDate

	checkLogonHours

	date

	dateToTime ([image: new] in version 2.0.12)

	encrypt

	groupMatch

	has2f ([image: new] in version 2.0.10)

	inGroup ([image: new] in version 2.0.8)

	isInNet6

	iso2unicode

	listMatch ([image: new] in version 2.0.7)

	token

	unicode2iso

	varIsInUri ([image: new] in version 2.0.7)

Tip

To know more about the jail, check Safe module
documentation [http://perldoc.perl.org/Safe.html].

Extended Functions List

date

Returns the date, in format YYYYMMDDHHMMSS, local time by default, GMT
by calling date(1)

For example: date(1) lt '19551018080000'

dateToTime

New in version 2.0.12.

Converts a string date into epoch time.

The date format is the LDAP date syntax, for example for the 1st March
2009 (GMT):

20090301000000Z

The date may end with a differential timezone that is interpreted to
adjust the epoch time, for example for the 1st March 2009 (+0100):

20090301000000+0100

Simple usage example:

dateToTime($ssoStartDate) lt dateToTime(date(1))

checkLogonHours

This function will check the day and the hour of current request, and
compare it to allowed days and hours. It returns 1 if this match, 0
else. By default, the allowed days and hours is an hexadecimal
value, representing each hour of the week. A day has 24 hours, and a
week 7 days, so the value contains 168 bits, converted into 42
hexadecimal characters. Sunday is the first day.

For example, for a full access, excepted week-end:

000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000

Tip

You can use the binary value from the logonHours attribute of Active
Directory, or create a custom attribute in your LDAP schema.

Functions parameters:

	logon_hours: string representing allowed logon hours (GMT)

	syntax (optional): hexadecimal (default) or octetstring

	time_correction (optional): hours to add or to subtract

	default_access (optional): what result to return if
logon_hours is empty

Simple usage example:

checkLogonHours($ssoLogonHours)

If you use the binary value (Active Directory), use this:

checkLogonHours($ssoLogonHours, 'octetstring')

You can also configure jetlag (if all of your users use the same
timezone):

checkLogonHours($ssoLogonHours, '', '+2')

If you manage different timezones, you have to take the jetlag into
account in ssoLogonHours values, or use the $_timezone parameter. This
parameter is set by the portal and use javascript to get the connected
user timezone. It should works on every browser:

checkLogonHours($ssoLogonHours, '', $_timezone)

You can modify the default behavior for people without value in
ssoLogonHours. Indeed, by default, users without logon hours values are
rejected. You can allow these users instead of reject them:

checkLogonHours($ssoLogonHours, '', '', '1')

checkDate

This function will check the date of current request, and compare it to
a start date and an end date. It returns 1 if this match, 0 else.

The date format is the LDAP date syntax, for example for the 1st of March
2009 (GMT)

20090301000000Z

[image: new] Since version 2.0.12, the date may end with a differential timezone,
for example for the 1st of March 2009 (+0100):

20090301000000+0100

Functions parameters:

	start: Start date (GMT unless, [image: new] since version 2.0.12, a
differential timezone is included)

	end: End date (GMT unless, [image: new] since version 2.0.12, a
differential timezone is included)

	default_access (optional): what result to return if start and
end are empty

Simple usage example:

checkDate($ssoStartDate, $ssoEndDate)

basic

Attention

This function is not compliant with
Safe jail, you will need to disable the jail to use
it.

This function builds the Authorization HTTP header used in
HTTP Basic authentication scheme. It will
force conversion from UTF-8 to ISO-8859-1 of user and password data.

Functions parameters:

	user

	password

Simple usage example:

basic($uid,$_password)

unicode2iso

Attention

This function is not compliant with
Safe jail, you will need to disable the jail to use
it.

This function convert a string from UTF-8 to ISO-8859-1.

Functions parameters:

	string

Simple usage example:

unicode2iso($name)

iso2unicode

Attention

This function is not compliant with
Safe jail, you will need to disable the jail to use
it.

This function convert a string from ISO-8859-1 to UTF-8.

Functions parameters:

	string

Simple usage example:

iso2unicode($name)

groupMatch

this function allows one to parse the $hGroups variable to check if
a value is present inside a group attribute.

Function parameter:

	groups: $hGroups variable

	attribute: Name of group attribute

	value: Value to check

Simple usage example:

groupMatch($hGroups, 'description', 'Service 1')

has2f

New in version 2.0.10.

This function tests if the current user has registered a second factor. The following types are supported:

	TOTP

	U2F

	UBK

Example:

has2f()
has2f('UBK')
has2f('UBK') or has2f('TOTP')

Warning

Do NOT use this test to check if the user has used their second factor for logging in!
This test only checks if the user has registered a second factor. Regardless of their current
authentication level. It can be used to simplify second factor activation rules.

Note

Before version 2.0.10, you need to use the following syntax

$_2fDevices =~ /"type":\s*"TOTP"/s

listMatch

New in version 2.0.7.

This function lets you test if a particular value can be found with a
multi-valued session attribute.

Function parameter:

	list: Variable containing several values (plain string with
separator, array or hash)

	value: Value to search in the list

	ignorecase: Ignore case, by default the search is case-sensitive

Simple usage example:

Case sensitive match
listMatch($roles, 'role-app1')

Case insensitive match
listMatch($roles, 'RoLe-aPp1', 1)

The function returns 1 if the value was found, and 0 if it was not
found.

inGroup

New in version 2.0.8.

This function lets you test if the user is in a given group. It is
case-insensitive.

Usage example:

inGroup('admins')

inGroup('test users')

The function returns 1 if the user belongs to the given group, and 0 if
they don’t.

encrypt

Tip

Since version 2.0, this function is now compliant with
Safe jail.

This function uses the secret key of LLNG configuration to crypt a data.
This can be used for anonymizing identifier given to the protected
application.

encrypt($_whatToTrace)

token

This function generates token used for
handling server webservice calls.

token($_session_id,'webapp1.example.com','webapp2.example.com')

isInNet6

Function to check if an IPv6 address is in a subnet. Example check if
IP address is local:

isInNet6($ipAddr, 'fe80::/10')

varIsInUri

New in version 2.0.7.

Function to check if a variable is in requested URI

Example check if $uid is in /check-auth/ URI:

varIsInUri($ENV{REQUEST_URI}, '/check-auth/', $uid)

https://test1.example.com/check-auth/dwho -> true
https://test1.example.com/check-auth/dwho/api -> true
https://test1.example.com/check-auth/dwh -> false

* You can set “restricted” flag to match exact URI:

varIsInUri($ENV{REQUEST_URI}, '/check-auth/', "$uid/", 1)

https://test1.example.com/check-auth/rtyler/ -> true
https://test1.example.com/check-auth/rtyler/api -> false
https://test1.example.com/check-auth/rtyler -> false

Reset password by mail

Presentation

LL::NG can propose a password reset form, for users who loose their
password (this kind of application is also called a self service
password interface).

Kinematics:

	User clicks on the link Reset my password

	User enters his email (or another information) in the password reset
form

	LL::NG try to find the user in users database with the given
information

	A mail with a token is sent to user

	The user click on the link in the mail

	LL::NG validate the token and propose a password change form

	The user can choose a new password or ask to generate one

	The new password is sent to user by mail if user ask to generate one,
else the mail only confirm that the password was changed

Tip

If LDAP backend is used, and LDAP password
policy is enabled, the ‘password reset flag is set to true when password
is generated, so that the user is forced to change his password on next
connection. This feature can be disabled in
LDAP configuration.

Tip

If the user do a new password reset request but there is
already a request pending, the user can ask the confirmation mail to be
resent. The request validity time is a configuration parameter.

Configuration

The reset password link must be activated, see
portal customization.

The SMTP server must be setup, see SMTP server setup.

Then go in Manager, General Parameters » Plugins »
Password management :

	Password reset mail content:

	Success mail subject: Subject of mail sent when password is
changed (default: [LemonLDAP::NG] Your new password)

	Success mail content (optional): Content of mail sent when
password is changed

	Confirmation mail subject: Subject of mail sent when password
change is asked (default: [LemonLDAP::NG] Password reset
confirmation)

	Confirmation mail content (optional): Content of mail sent
when password change is asked

Attention

By default, mail content are empty in order to use HTML
templates:

	portal/skins/common/mail_confirm.tpl

	portal/skins/common/mail_password.tpl

If you define mail contents in Manager, HTML templates will not be used.

	Other:

	Page URL: URL of password reset page (default:
[PORTAL]/resetpwd)

	Validity time of a password reset request: number of seconds
for password reset request validity. During this period, user can
ask the confirmation mail to be resent (default: session timeout
value)

	Display generate password box: display a checkbox to allow
user to generate a new password instead of choosing one (default:
disabled)

* **Regexp for password generation**: Regular expression used to generate the password (default: [A-Z]{3}[a-z]{5}.\d{2})

Register a new account

Presentation

This feature is a page that allows a user to create an account. The
steps are the following:

	User click on the button “Create a new account”

	He enters first name, last name and email

	He gets a mail with a confirmation link

	After clicking, his entry is added

	He gets a mail with his login and his password

Configuration

You can enable the “Create your account” button in
portal customization parameters.

Then, go in Portal > Advanced parameters >
Register new account:

	Module: Choose the backend to use to create the new account.

	Page URL: URL of register page

	Validity time of a register request: duration in seconds of a new
account request. The request will be deleted after this time if user
do not click on the link.

	Subject for confirmation mail: Subject of the mail containing the
confirmation link

	Subject for done mail: Subject of the mail giving login and
password

Logout forward

Presentation

Even if LL:NG can catch logout URL through
virtual host rules, you can have the
need to forward a logout to other applications, to close their local
sessions.

LL::NG has a logout forward mechanism, that will add a step in logout
process, to send logout requests (indeed, GET requests on application
logout URL) inside hidden iframes.

Tip

The logout request will be sent even if the user did not use
the application.

Configuration

Go in Manager, General parameters » Advanced parameters »
Logout forward and click on Add a key, then fill:

	Key: application name

	Value: application logout URL

Attention

The request on logout URL will be sent after user is
disconnected, so you should unprotect this URL if it is protected by an
LL::NG Handler.

Secure Token Handler

Presentation

The Secure Token Handler is a special Handler that creates a token for
each request and send it to the protected application. The real user
identifier is stored in a Memcached server and the protected application
can request the Memcached server to get user identifier.

This mechanism allows one to protect an application with an unsafe link
between Handler and the application, but with a safe link between the
Memcached server and the application.

Configuration

Install Cache::Memcached dependency.

Virtual host

You just have to set “Type: SecureToken” in the VirtualHost options in
the manager.

If you want to protect only a virtualHost part, keep type on “Main” and
set type in your configuration file:

	Apache: use simply a PerlSetVar VHOSTTYPE AuthBasic

	Nginx: create another FastCGI with a
fastcgi_param VHOSTTYPE SecureToken;

Note

This handler uses Apache2Filter Module to hide token, prefer
Handling server webservice calls for other
servers.

Handler parameters

SecureToken parameters are the following:

	Memcached servers: addresses of Memcached servers, separated with
spaces.

	Token expiration: time in seconds for token expiration (remove
from Memcached server).

	Attribute to store: the session key that will be stored in
Memcached.

	Protected URLs: Regexp of URLs for which the secure token will be
sent, separated by spaces

	Header name: name of the HTTP header carrying by the secure
token.

	Allow requests in error: allow a request that has generated an
error in token generation to be forwarded to the protected
application without secure token (default: yes)

Attention

Due to Handler API change in 1.9, you need to set these
attributes in lemonldap-ng.ini and not in Manager, for example:

[handler]
secureTokenMemcachedServers = 127.0.0.1:11211
secureTokenExpiration = 60
secureTokenAttribute = uid
secureTokenUrls = .*
secureTokenHeader = Auth-Token
secureTokenAllowOnError = 1

AuthBasic Handler

Presentation

The AuthBasic Handler is a special Handler using AuthBasic method to
authenticate and grante access to a virtual host.

The Handler sends a WWW-Authenticate header to the client, to request
user id and password. Then it checks credentials by using LL::NG REST
web service (REST session service must be enabled in the manager). Once
session is granted, the Handler will check authorizations like the
standard Handler.

This feature can be useful to allow a third party application to access
a virtual host with user credentials by sending a Basic challenge to it.

Configuration

Portal

REST server must be enabled on portal.

Virtual host

You just have to set “Type: AuthBasic” in the virtualHost options in the
manager.

If you want to protect only a virtualHost part, keep type on “Main” and
set type in your configuration file:

	Apache: use simply a PerlSetVar VHOSTTYPE AuthBasic

	Nginx: create another FastCGI with a
fastcgi_param VHOSTTYPE AuthBasic; (and remove error_page 401)

Handler parameters

No parameters needed. But you have to allow REST sessions web services,
see REST sessions backend, enable local cache
(enabled by default in lemonldap-ng.ini) and allow source IP addresses
to access required locations in Portal Virtual Host.

Danger

With AuthBasic handler, you have to disable CSRF token by
setting a special rule based on source IP addresses like this :

requireToken => $env->{REMOTE_ADDR} !~ /^127.0.[1-3].1$/

With Backend choice by users, you have to declare which authentication module is
requested by handler to create global session.

Go to:
General Parameters > Authentication parameters > Choice parameters

and set authentication module’s name :

Choice used for password authentication => 2_LDAP (by example)

Attention

With HTTPS, you may have to set LWP::UserAgent
object with verify_hostname => 0 and SSL_verify_mode => 0.

Go to:

General Parameters > Advanced Parameters > Security > SSL options for server requests

SSO as a service (SSOaaS)

Our concept of SSOaaS

Access management provides 3 services:

	Global Authentication: Single Sign-On

	Authorization: to grant authentication is not enough. User rights
must be checked

	Accounting: SSO logs (access) + application logs (transactions and
results)

LL::NG affords all these services (except application logs of course,
but headers are provided to permit this).

Headers setting is an another LL::NG service. LL::NG can provide any
user attributes to an application (see
Rules and headers)

*aaS means that application can drive underlying layer (IaaS for
infrastructure, PaaS for platform,…). So for us, SSOaaS must provide
the ability for an app to manage authorizations and choose user
attributes to set. Authentication can not be really *aaS: app must
just use it, not manage it.

LL::NG affords some features that can be used to provide SSO as a
service: a web application can manage its rules and headers. Docker or
VM images (Nginx only) includes LL::NG Nginx configuration that aims to
a global
LL::NG authorization server.
By default, all authenticated users can access and one header is set:
Auth-User. If application gives a RULES_URL parameter that refers to
a JSON file, authorization server will read it, apply specified rules
and set required headers (see DevOps Handler).

There are two different architectures to do this:

	Using a global FastCGI (or uWSGI) server

	Using front reverse-proxies (some cloud installations use
reverse-proxies in front-end)

Example of a global FastCGI architecture:

[image: image0]

In both case, Handler type must be set to DevOps.

Examples of webserver configuration for Docker/VM images

Using a global FastCGI (or uWSGI) server

Nginx

In this example, web server templates (Nginx only) are configured to
request authorization from a central FastCGI server:

server {
 server_name myapp.domain.com;
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 # Pass authorization requests to Central FastCGI server:
 fastcgi_pass 10.1.2.3:9090;
 fastcgi_param VHOSTTYPE DevOps;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;

 # Set dynamically rules (LLNG will poll it every 10 mn)
 fastcgi_param RULES_URL http://rulesserver/my.json
 }
 location /rules.json {
 auth_request off;
 allow 10.1.2.3;
 deny all;
 }
 location ~ ^(.*\.php)$ {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 # ...
 # Example with php-fpm:
 include snippets/fastcgi-php.conf;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 }
 location / {
 try_files $uri $uri/ =404;
 }
}

Apache

There is an experimental FactCGI client in LLNG. You just have to
install FCGI::Client and add this in the apache2.conf or your web
applications or proxies.

The following configuration example assumes that you are in a “central
FastCGI” configuration.

<VirtualHost ...>
 ServerName app.tls
 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2::FCGIClient

 # This must point to the central FastCGI server
 PerlSetVar LLNG_SERVER 192.0.2.1:9090

 # Declare this vhost as a DevOps vhost, so that we do not have
 # to declare it in the LemonLDAP::NG Manager
 PerlSetVar VHOSTTYPE DevOps

 # This URL will be fetched by the central FastCGI server and
 # used to make the authentication decision about this virtualhost
 # Make sure the central FastCGI server can reach it
 PerlSetVar RULES_URL http://app.tld/rules.json
 ...
</VirtualHost>

Node.js

Using express [https://github.com/expressjs/express#readme] and
fastcgi-authz-client [https://github.com/LemonLDAPNG/node-fastcgi-authz-client],
you can protect also an Express server. Example:

var express = require('express');
var app = express();
var FcgiAuthz = require('fastcgi-authz-client');
var handler = FcgiAuthz({
 host: '127.0.0.1',
 port: 9090,
 PARAMS: {
 RULES_URL: 'http://my-server/rules.json'
 }
});

app.use(handler);

// Simple express application
app.get('/', function(req, res) {
 return res.send('Hello ' + req.upstreamHeaders['auth-user'] + ' !');
});

// Launch server
app.listen(3000, function() {
 return console.log('Example app listening on port 3000!');
});

Plack application

You just have to enable
Plack::Middleware::Auth::FCGI [https://metacpan.org/pod/Plack::Middleware::Auth::FCGI].
Simple example:

use Plack::Builder;

my $app = sub {
 my $env = shift;
 my $user = $env->{fcgiauth-auth-user};
 return [200, ['Content-Type' => 'text/plain'], ["Hello $user"]];
};

Optionally ($fcgiResponse is the PSGI response of remote FCGI auth server)
#sub on_reject {
my($self,$env,$fcgiResponse) = @_;
my $statusCode = $fcgiResponse->{status};
...
#}

builder
{
 enable "Auth::FCGI",
 host => '127.0.0.1',
 port => '9090',
 fcgi_auth_params => {
 RULES_URL => 'https://my-server/my.json',
 },
 # Optional rejection subroutine
 #on_reject => \&on_reject;
 ;
 $app;
};

Using front reverse-proxies

This is a simple Nginx configuration file. It looks like a standard
LL::NG nginx configuration file except for:

	VHOSTTYPE parameter forced to use DevOps handler

	/rules.json must not be protected by LL::NG but by the web server
itself

This configuration handles *.dev.sso.my.domain URL and forwards
authenticated requests to <vhost>.internal.domain. Rules can be
defined in /rules.json which is located at the website root
directory.

server {
 server_name "~^(?<vhost>.+?)\.dev\.sso\.my\.domain$";
 location = /lmauth {
 internal;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/llng-fastcgi-server/llng-fastcgi.sock;
 # Force handler type:
 fastcgi_param VHOSTTYPE DevOps;
 # Drop post datas
 fastcgi_pass_request_body off;
 fastcgi_param CONTENT_LENGTH "";
 # Keep original hostname
 fastcgi_param HOST $http_host;
 # Keep original request (LLNG server will received /lmauth)
 fastcgi_param X_ORIGINAL_URI $original_uri;
 }
 location /rules.json {
 auth_request off;
 allow 127.0.0.0/8;
 deny all;
 }
 location / {
 auth_request /lmauth;
 set $original_uri uriis_args$args;
 auth_request_set $lmremote_user $upstream_http_lm_remote_user;
 auth_request_set $lmlocation $upstream_http_location;
 error_page 401 $lmlocation;
 include /etc/lemonldap-ng/nginx-lua-headers.conf;
 proxy_pass https://$vhost.internal.domain;
 }
}

Handling server webservice calls

In modern applications, web application may need to request some other
web applications on behalf of the authenticated users. There are three
ways to do this:

	the Ugly : provide to all applications SSO cookie. Not secured
because SSO cookie can be caught and used everywhere, every time by
everyone!!! NOT RECOMMENDED.

	the Bad (Secure Token Handler)
: Deprecated. Can be used in specific cases

	the Good (Service Token Handler): See below ! (Thanks Sergio…)

The “Bad” method consists to give the token (cookie value) to WebApp1
which uses it as cookie header in its request. Since 2.0 version, LL::NG
gives a better way (the Good !) to do this by using limited scope
tokens.

Tokens are time limited (30 seconds by default) and URL restricted.

[image: Kinematic]

Webapp1 handler configuration

Select Main handler type to protect WebApp1 and insert a header
named X-Llng-Token filled with this value:

token($_session_id, 'webapp2.example.com', 'webapp3.example.com', 'serviceHeader1=webapp1.example.com', "testHeader=$uid")

WebApp1 can read this header and use it in its requests by setting the
X-Llng-Token header. The token is built by using the session ID and
authorized virtualhosts list. By default, the Service Token is only
available during 30 seconds and for specified virtualhosts. The token
can be use to send service headers to webapp2 like origin host by
example.

You can set ServiceToken TTL in the virtualHost options in Manager for
each required virtualHost.

You can also set ServiceToken default timeout (30 seconds) by editing
lemonldap-ng.ini in section [handler]:

[handler]
handlerServiceTokenTTL = 30

Note

Service token timeout can be set for each virtual hosts.

Webapp2 handler configuration

Change handler type to ServiceToken. So it is able to manage both
user and server connections. And that’s all !

Safe jail

Presentation

LemonLDAP::NG uses Safe jail to evaluate all expressions:

	Access rules

	Headers

	Form replay parameters

	Macros

	Groups

	Conditions:

	Menu modules display

	Multi modules display

	IssuerDB use

	Session opening

More information about Safe on
CPAN [http://search.cpan.org/search?query=Safe&mode=module]

Disable Safe jail

Safe can be very annoying when using
extended functions or
custom functions. In this case, you might want
to disable it.

To do this, go into Manager > General Parameters > Advanced Parameters >
Security > Use Safe Jail and disable it.

Assignment test

Presentation

Perl comparaisons are done by using eq for strings or == for integers.
To avoid an unwanted assignment like $authLevel = 5 (BAD EXPRESSION!),
you can enable Avoid assignment in expressions option.

To do this, go into Manager > General Parameters > Advanced Parameters >
Security > Avoid assignment in expressions and enable it.

DISABLE by default.

Login History

Presentation

LemonLDAP::NG allows one to store user logins and login attempts in
their persistent session.

Users can see their own history in menu, if menu module
Login history is enabled.

Session history is always visible in session explorer for
administrators.

Configuration

This feature can be enabled and configured in Manager, in
General Parameters » Plugins » Login History.
You can define how many logins and failed logins will be stored.

A login is considered as successful if user get authenticated and is
granted a session; as failed, if he fails to authenticate or if he is
not allowed to open a session. In other cases which result on
impossibility to authenticate user, to retrieve data or to create a
session, nothing is stored.

By default, login time and IP address are stored in history, and the
error message prompted to the user for failed logins. It is possible to
store any additional session data. For example to store authentication
mode, you can set in Session data to store a new key _auth with
value Authentication mode. The value will be used to display the
data.

To allow the Login History tab in Menu, configure it in
General Parameters > Portal > Menu > Modules (see
portal menu configuration).

You can also display a check box on the authentication form, to allow
user to see their login history before being redirected to the protected
application (see
portal customization).

FastCGI support

Attention

Since 2.0, all LLNG components run under FastCGI

LemonLDAP::NG FastCGI server

Since 1.9, Lemonldap::NG provides a FastCGI server usable to protect
applications with Nginx (See
Manage virtual hosts page to
configure virtual hosts).

This FastCGI server can be used for all LLNG components. It compiles
enabled components on-the-fly.

Start

Using packages

You just have to install lemonldap-ng-fastcgi-server package, it will be
started automatically.

Using “make install”

To enable the FastCGI server at startup, copy the script
llng-fastcgi-server installed in INITDIR (default
/usr/local/lemonldap-ng/etc/init.d/) in /etc/init.d and enable
it (links to /etc/rc<x>.d).

Configuration

FastCGI server has few parameters. They can be set by environment
variables (read by startup script) or by command line options. A default
configuration file can be found in
/usr/local/lemonlda-ng/etc/default/llng-fastcgi-server (or
/etc/default/lemonldap-ng-fastcgi-server in Debian package).

The FastCGI server reads also LLTYPE parameter in FastCGI requests
(see portal-nginx.conf or manager-nginx.conf) to choose which module is
called:

	cgi for the portal (or any CGI: it works like PHP-FPM for Perl !)

	manager for the manager

	status to see statistics (if enabled)

if LLTYPE is set to another value or not set, FastCGI server works
as handler.

Advanced PSGI usage

LLNG is build on Plack [http://plackperl.org/], so it can be used
with any compatible server:

	Starman [https://metacpan.org/pod/starman]

	Twiggy [https://metacpan.org/pod/twiggy]

	Twiggy::Prefork [https://metacpan.org/pod/Twiggy::Prefork]

	Starman [https://metacpan.org/pod/feersum]

	uWSGI using uWSGI PSGI
plugin [http://uwsgi-docs.readthedocs.io/en/latest/Perl.html]

	Alternative: Node.js handler can be used as
FastCGI server, only for application protection

uWSGI or Node.js FastCGI server may provide the
highest performance.

FastCGI server replacement

A llng-server.psgi is provided in example directory. It is designed
to replace exactly FastCGI server. You can use it :

	with a FCGI Plack server, but you just have to change
llng-fastcgi-server engine (in
/etc/default/lemonldap-ng-fastcgi-server) to have the same result.
Available engines:

	FCGI [https://metacpan.org/pod/Plack::Handler::FCGI]
(default). It can use the following managers:

	FCGI::ProcManager [https://metacpan.org/pod/FCGI::ProcManager]
(default)

	FCGI::ProcManager::Constrained [https://metacpan.org/pod/FCGI::ProcManager::Constrained]

	FCGI::ProcManager::Dynamic [https://metacpan.org/pod/FCGI::ProcManager::Dynamic]

	AnyEvent::FCGI [https://metacpan.org/pod/Plack::Handler::AnyEvent::FCGI]

	FCGI::EV [https://metacpan.org/pod/Plack::Handler::FCGI::EV]

	FCGI::Engine [https://metacpan.org/pod/Plack::Handler::FCGI::Engine]

	FCGI::Engine::ProcManager [https://metacpan.org/pod/Plack::Handler::FCGI::Engine::ProcManager]

	FCGI::Async [https://metacpan.org/pod/Plack::Handler::FCGI::Async]

	with uWSGI (see below)

Attention

Starman, Twiggy,… are HTTP servers, not FastCGI ones
!

You can also replace only a part of it to create a specialized FastCGI
server (portal,…). Look at llng-server.psgi example and take the
part you want to use.

There are also some other psgi files in examples directory.

LLNG FastCGI Server

llng-fastcgi-server can be launched with the following options:

	Command-line options

	Environment variable

	Explanation

	Short

	Long

	
	

	-p

	–pid

	PID

	Process PID

	-u

	–user

	USER

	Unix uid

	-g

	–group

	GROUP

	Unix gid

	-n

	–proc

	NPROC

	Number of process to launch (FCGI::ProcManager)

	-s

	–socket

	SOCKET

	Socket to listen to

	-l

	–listen

	LISTEN

	Listening address. Examples: host:port, :port, /socket/path

	-f

	–customFunctionsFile

	CUSTOM_FUNCTIONS_FILE

	File to load for custom functions

	-e

	–engine

	ENGINE

	Plack::Handler engine, default to FCGI (see below)

	

	–plackOptions

	
	Other options to path to Plack. Can bu multi-valued. Values must look like --key=value

See llng-fastcgi-server(1) manpage.

Some examples

FCGI with FCGI::ProcManager::Constrained

llng-fastcgi-server -u nobody -g nobody -s /run/llng.sock -n 10 -e FCGI \
 --plackOptions=--manager=FCGI::ProcManager::Constrained

FCGI::Engine::ProcManager

llng-fastcgi-server -u nobody -g nobody -s /run/llng.sock -n 10 \
 -e FCGI::Engine::ProcManager

Using uWSGI

You must install uWSGI PSGI plugin. Then for example, launch
llng-server.psgi (simple example):

/usr/bin/uwsgi --plugins psgi --socket :5000 --uid www-data --gid www-data --psgi /usr/share/lemonldap-ng/llng-server/llng-server.psgi

You will find in LLNG Nginx configuration files some comments that
explain how to configure Nginx to use uWSGI instead of LLNG FastCGI
server.

Using Debian lemonldap-ng-uwsgi-app package

lemonldap-ng-uwsgi-app installs a uWSGI application:
/etc/uwsgi/apps-available/llng-server.yaml. To enable it, link it in
apps-enabled and restart your uWSGI daemon:

apt-get install uwsgi uwsgi-plugin-psgi
cd /etc/uwsgi/apps-enabled
ln -s ../apps-available/llng-server.yaml
service uwsgi restart

Then adapt your Nginx configuration to use this uWSGI app.

Configuration

To serve large requests with uWSGI, you could have to modify in uWSGI
and/or Nginx init files several options. Example:

workers = 4
buffer-size = 65535
limit-post = 0

client_max_body_size 300M;
proxy_send_timeout 600;
proxy_read_timeout 600;
proxy_connect_timeout 600;
uwsgi_read_timeout 120;
uwsgi_send_timeout 120;

Note

Nginx natively includes support for upstream servers speaking the uwsgi protocol since version 0.8.40.
To improve performances, you can switch from a TCP socket to an Unix Domain Socket by editing
llng-server.yaml:

uwsgi:
 plugins: psgi
 socket: /tmp/uwsgi.sock

and adapting Nignx configuration files:

OR TO USE uWSGI
include /etc/nginx/uwsgi_params;
uwsgi_pass unix:///tmp/uwsgi.sock;
uwsgi_param LLTYPE psgi;
uwsgi_param SCRIPT_FILENAME $document_root$sc;
uwsgi_param SCRIPT_NAME $sc;
Uncomment this if you use Auth SSL:
#uwsgi_param SSL_CLIENT_S_DN_CN $ssl_client_s_dn_cn;

Protect a PSGI application

LLNG provides Plack::Middleware::Auth::LemonldapNG that can be used
to protect any PSGI application: it acts exactly like a LLNG handler.
Simple example:

use Plack::Builder;

my $app = sub { ... };
builder {
 enable "Auth::LemonldapNG";
 $app;
};

More advanced example:

use Plack::Builder;

my $app = sub { ... };

Optionally ($proposedResponse is the PSGI response of Lemonldap::NG handler)
sub on_reject {
 my($self,$env,$proposedResponse) = @_;
 # ...
}

builder {
 enable "Auth::LemonldapNG",
 llparams => {
 # ...
 },
 on_reject => \&on_reject;
 $app;
};

Ignore some manager tests

Each time you save a configuration, Manager launch a lot of tests:

	unit tests for each key: they are declared in
Lemonldap::NG::Manager::Attributes (source
Lemonldap::NG::Manager::Build::Attributes)

	more advanced tests declared in Lemonldap::NG::Manager::Conf::Tests

In some case (conf overridden in INI file,…), you may have to ignore
some of them. You just have to list them (space separated) in a
special key in lemonldap-ng.ini, section [Manager]:

	skippedUnitTests for unit tests

	skippedGlobalTests for global tests

Example:

[Manager]
skippedUnitTests = grantSessionRules portalSkinRules
skippedGlobalTests = testApacheSession

Rules examples

This page contains a few useful Perl expressions you can use in your
Handler rules, SAML/OIDC/CAS security
rules, 2FA Activation rules, etc.

Using session attributes

Session attributes are visible in the Manager’s Session browser, any
attribute you see there can be used in a rule!

	Restricting access to a single user:

$uid eq "dwho"
$uidNumber == 1000
$cn eq "Doctor Who"
$email eq "dwho@badwolf.org"
etc.

Tip

In Perl, eq means Equal and must be used on strings.
== should be used only on numbers

Danger

In Perl, @ character means an array and % a hash!
If you want to write a macro with these characters, you have to escape them like this:

$my_email = "$uid\@my-domain.com"
$percent = "$rate\%more"

	Restricting access to specific groups

$groups =~ /\b(?:admins|su)\b/ # admins OR su
$groups =~ /\badmin_[1-3a]\b/ # admin_1 OR admin_2 OR admin_3 OR admin_a

defined $hGroups->{'administrators'}

2.0.8 and higher only
inGroup('administrators')

	Combining multiple expressions

inGroup('timelords') and not $uid eq 'missy'

	Using Perl’s regular expressions

$cn =~ /^Doctor.*/i
$email !~ /@spam.com$/

	Filtering on Authentication Level

$authenticationLevel >= 3

	Filtering on Authentication method

$_auth ne 'Demo'

	Checking if the user has a an available second factor.

Since 2.0.10
has2f()
has2f('TOTP')
has2f('TOTP') or has2f('U2F')

Before 2.0.10
$_2fDevices =~ /"type":\s*"TOTP"/s

Tip

In Perl, ne means Not Equal and must be used on
strings. \b means word Boundary. (?:) means non capturing
parenthesis.

Using environment variables

	Comparing the IP address

$env->{REMOTE_ADDR} =~ /^10\./

	Comparing requested URI

$env->{REQUEST_URI} =~ /test/

Parameter list

Tip

Click on a column header to sort table. The attribute key
name can be used directly in lemonldap-ng.ini or in Perl scripts to
override configuration parameters (see
configuration location).

Main parameters

	Key name

	Documentation

	Portal

	Handler

	Manager

	ini file only

	ADPwdExpireWarning

	AD password expire warning

	✔

	
	
	

	ADPwdMaxAge

	AD password max age

	✔

	
	
	

	AuthLDAPFilter

	LDAP filter for auth search

	✔

	
	
	

	LDAPFilter

	Default LDAP filter

	✔

	
	
	

	SMTPAuthPass

	Password to use to send mails

	✔

	
	
	

	SMTPAuthUser

	Login to use to send mails

	✔

	
	
	

	SMTPPort

	Fix SMTP port

	✔

	
	
	

	SMTPServer

	SMTP Server

	✔

	
	
	

	SMTPTLS

	TLS protocol to use with SMTP

	✔

	
	
	

	SMTPTLSOpts

	TLS/SSL options for SMTP

	✔

	
	
	

	SSLAuthnLevel

	SSL authentication level

	✔

	
	
	

	SSLVar

	
	✔

	
	
	

	SSLVarIf

	
	✔

	
	
	

	activeTimer

	Enable timers on portal pages

	✔

	
	
	

	adaptativeAuthenticationLevelRules

	Adaptative authentication level rules

	✔

	
	
	

	apacheAuthnLevel

	Apache authentication level

	✔

	
	
	

	applicationList

	Applications list

	✔

	
	
	

	authChoiceAuthBasic

	Auth module used by AuthBasic handler

	✔

	
	
	

	authChoiceFindUser

	Auth module used by FindUser plugin

	✔

	
	
	

	authChoiceModules

	Hash list of Choice strings

	✔

	
	
	

	authChoiceParam

	Applications list

	✔

	
	
	

	authentication

	Authentication module

	✔

	
	
	

	autoSigninRules

	List of auto signin rules

	✔

	
	
	

	available2F

	Available second factor modules

	✔

	
	
	✔

	available2FSelfRegistration

	Available self-registration modules for second factor

	✔

	
	
	✔

	avoidAssignment

	Avoid assignment in expressions

	✔

	✔

	
	

	browsersDontStorePassword

	Avoid browsers to store users password

	✔

	
	
	

	bruteForceProtection

	Enable brute force attack protection

	✔

	
	
	

	bruteForceProtectionIncrementalTempo

	Enable incremental lock time for brute force attack protection

	✔

	
	
	

	bruteForceProtectionLockTimes

	Incremental lock time values for brute force attack protection

	✔

	
	
	

	bruteForceProtectionMaxAge

	Max age between current and first failed login

	✔

	
	
	✔

	bruteForceProtectionMaxFailed

	Max allowed failed login

	✔

	
	
	

	bruteForceProtectionMaxLockTime

	Max lock time

	✔

	
	
	✔

	bruteForceProtectionTempo

	Lock time

	✔

	
	
	

	captcha_login_enabled

	Captcha on login page

	✔

	
	
	

	captcha_mail_enabled

	Captcha on password reset page

	✔

	
	
	

	captcha_register_enabled

	Captcha on account creation page

	✔

	
	
	

	captcha_size

	Captcha size

	✔

	
	
	

	casAccessControlPolicy

	CAS access control policy

	✔

	
	
	

	casAppMetaDataOptions

	Root of CAS app options

	✔

	
	
	[1]

	casAttr

	Pivot attribute for CAS

	✔

	
	
	

	casAttributes

	CAS exported attributes

	✔

	
	
	

	casAuthnLevel

	CAS authentication level

	✔

	
	
	

	casSrvMetaDataOptions

	Root of CAS server options

	✔

	
	
	[1]

	casStorage

	Apache::Session module to store CAS user data

	✔

	
	
	

	casStorageOptions

	Apache::Session module parameters

	✔

	
	
	

	cda

	Enable Cross Domain Authentication

	✔

	✔

	
	

	certificateResetByMailCeaAttribute

	
	✔

	
	
	

	certificateResetByMailCertificateAttribute

	
	✔

	
	
	

	certificateResetByMailStep1Body

	Custom Certificate reset mail body

	✔

	
	
	

	certificateResetByMailStep1Subject

	Mail subject for certificate reset email

	✔

	
	
	

	certificateResetByMailStep2Body

	Custom confirm Certificate reset mail body

	✔

	
	
	

	certificateResetByMailStep2Subject

	Mail subject for reset confirmation

	✔

	
	
	

	certificateResetByMailURL

	URL of certificate reset page

	✔

	
	
	

	certificateResetByMailValidityDelay

	
	✔

	
	
	

	cfgAuthor

	Name of the author of the current configuration

	✔

	
	
	✔

	cfgAuthorIP

	Uploader IP address of the current configuration

	✔

	
	
	✔

	cfgDate

	Timestamp of the current configuration

	✔

	
	
	✔

	cfgLog

	Configuration update log

	✔

	
	
	✔

	cfgNum

	Enable Cross Domain Authentication

	✔

	
	
	✔

	cfgVersion

	Version of LLNG which build configuration

	✔

	
	
	✔

	checkState

	Enable CheckState plugin

	✔

	
	
	

	checkStateSecret

	Secret token for CheckState plugin

	✔

	
	
	

	checkTime

	Timeout to check new configuration in local cache

	✔

	✔

	
	✔

	checkUser

	Enable check user

	✔

	
	
	

	checkUserDisplayComputedSession

	Display empty headers rule

	✔

	
	
	

	checkUserDisplayEmptyHeaders

	Display empty headers rule

	✔

	
	
	

	checkUserDisplayEmptyValues

	Display session empty values rule

	✔

	
	
	

	checkUserDisplayNormalizedHeaders

	Display normalized headers rule

	✔

	
	
	

	checkUserDisplayPersistentInfo

	Display persistent session info rule

	✔

	
	
	

	checkUserHiddenAttributes

	Attributes to hide in CheckUser plugin

	✔

	
	
	

	checkUserHiddenHeaders

	Header values to hide if not empty

	✔

	
	
	

	checkUserIdRule

	checkUser identities rule

	✔

	
	
	

	checkUserSearchAttributes

	Attributes used for retrieving sessions in user DataBase

	✔

	
	
	

	checkUserUnrestrictedUsersRule

	checkUser unrestricted users rule

	✔

	
	
	

	checkXSS

	Check XSS

	✔

	
	
	

	combModules

	Combination module description

	✔

	
	
	

	combination

	Combination rule

	✔

	
	
	

	compactConf

	Compact configuration

	✔

	
	
	

	configStorage

	Configuration storage

	✔

	✔

	✔

	✔

	confirmFormMethod

	HTTP method for confirm page form

	✔

	
	
	

	contextSwitchingAllowed2fModifications

	Allowed SFA modifications

	✔

	
	
	

	contextSwitchingIdRule

	Context switching identities rule

	✔

	
	
	

	contextSwitchingPrefix

	Prefix to store real session Id

	✔

	
	
	✔

	contextSwitchingRule

	Context switching activation rule

	✔

	
	
	

	contextSwitchingStopWithLogout

	Stop context switching by logout

	✔

	
	
	

	contextSwitchingUnrestrictedUsersRule

	Context switching unrestricted users rule

	✔

	
	
	

	cookieExpiration

	Cookie expiration

	✔

	✔

	
	

	cookieName

	Name of the main cookie

	✔

	✔

	
	

	corsAllow_Credentials

	Allow credentials for Cross-Origin Resource Sharing

	✔

	
	
	

	corsAllow_Headers

	Allowed headers for Cross-Origin Resource Sharing

	✔

	
	
	

	corsAllow_Methods

	Allowed methods for Cross-Origin Resource Sharing

	✔

	
	
	

	corsAllow_Origin

	Allowed origine for Cross-Origin Resource Sharing

	✔

	
	
	

	corsEnabled

	Enable Cross-Origin Resource Sharing

	✔

	
	
	

	corsExpose_Headers

	Exposed headers for Cross-Origin Resource Sharing

	✔

	
	
	

	corsMax_Age

	MAx-age for Cross-Origin Resource Sharing

	✔

	
	
	

	cspConnect

	Authorized Ajax destination for Content-Security-Policy

	✔

	
	
	

	cspDefault

	Default value for Content-Security-Policy

	✔

	
	
	

	cspFont

	Font source for Content-Security-Policy

	✔

	
	
	

	cspFormAction

	Form action destination for Content-Security-Policy

	✔

	
	
	

	cspFrameAncestors

	Frame-Ancestors for Content-Security-Policy

	✔

	
	
	

	cspImg

	Image source for Content-Security-Policy

	✔

	
	
	

	cspScript

	Javascript source for Content-Security-Policy

	✔

	
	
	

	cspStyle

	Style source for Content-Security-Policy

	✔

	
	
	

	customAddParams

	Custom additional parameters

	✔

	
	
	

	customAuth

	Custom auth module

	✔

	
	
	

	customFunctions

	List of custom functions

	✔

	✔

	✔

	

	customPassword

	Custom password module

	✔

	
	
	

	customPlugins

	Custom plugins

	✔

	
	
	

	customPluginsParams

	Custom plugins parameters

	✔

	
	
	

	customRegister

	Custom register module

	✔

	
	
	

	customResetCertByMail

	Custom certificateResetByMail module

	✔

	
	
	

	customToTrace

	Session parameter used to fill REMOTE_CUSTOM

	✔

	✔

	
	

	customUserDB

	Custom user DB module

	✔

	
	
	

	dbiAuthChain

	
	✔

	
	
	

	dbiAuthLoginCol

	
	✔

	
	
	

	dbiAuthPassword

	
	✔

	
	
	

	dbiAuthPasswordCol

	
	✔

	
	
	

	dbiAuthPasswordHash

	
	✔

	
	
	

	dbiAuthTable

	
	✔

	
	
	

	dbiAuthUser

	
	✔

	
	
	

	dbiAuthnLevel

	DBI authentication level

	✔

	
	
	

	dbiDynamicHashEnabled

	
	✔

	
	
	

	dbiDynamicHashNewPasswordScheme

	
	✔

	
	
	

	dbiDynamicHashValidSaltedSchemes

	
	✔

	
	
	

	dbiDynamicHashValidSchemes

	
	✔

	
	
	

	dbiExportedVars

	DBI exported variables

	✔

	
	
	

	dbiPasswordMailCol

	
	✔

	
	
	

	dbiUserChain

	
	✔

	
	
	

	dbiUserPassword

	
	✔

	
	
	

	dbiUserTable

	
	✔

	
	
	

	dbiUserUser

	
	✔

	
	
	

	decryptValueFunctions

	Custom function used for decrypting values

	✔

	
	
	

	decryptValueRule

	Decrypt value activation rule

	✔

	
	
	

	demoExportedVars

	Demo exported variables

	✔

	
	
	

	disablePersistentStorage

	Enabled persistent storage

	✔

	
	
	

	displaySessionId

	Display _session_id with sessions explorer

	✔

	
	
	

	domain

	DNS domain

	✔

	✔

	
	

	exportedAttr

	List of attributes to export by SOAP or REST servers

	✔

	
	
	

	exportedVars

	Main exported variables

	✔

	
	
	

	ext2FSendCommand

	Send command of External second factor

	✔

	
	
	

	ext2FValidateCommand

	Validation command of External second factor

	✔

	
	
	

	ext2fActivation

	External second factor activation

	✔

	
	
	

	ext2fAuthnLevel

	Authentication level for users authentified by External second factor

	✔

	
	
	

	ext2fCodeActivation

	OTP generated by Portal

	✔

	
	
	

	ext2fLabel

	Portal label for External second factor

	✔

	
	
	

	ext2fLogo

	Custom logo for External 2F

	✔

	
	
	

	facebookAppId

	
	✔

	
	
	

	facebookAppSecret

	
	✔

	
	
	

	facebookAuthnLevel

	Facebook authentication level

	✔

	
	
	

	facebookExportedVars

	Facebook exported variables

	✔

	
	
	

	facebookUserField

	
	✔

	
	
	

	failedLoginNumber

	Number of failures stored in login history

	✔

	
	
	

	findUser

	Enable find user

	✔

	
	
	

	findUserControl

	Regular expression to validate parameters

	✔

	
	
	

	findUserExcludingAttributes

	Attributes used for excluding accounts

	✔

	
	
	

	findUserSearchingAttributes

	Attributes used for searching accounts

	✔

	
	
	

	findUserWildcard

	Character used as wildcard

	✔

	
	
	

	forceGlobalStorageIssuerOTT

	Force Issuer tokens to be stored into Global Storage

	✔

	
	
	✔

	forceGlobalStorageUpgradeOTT

	Force Upgrade tokens be stored into Global Storage

	✔

	
	
	✔

	formTimeout

	Token timeout for forms

	✔

	
	
	

	githubAuthnLevel

	GitHub authentication level

	✔

	
	
	

	githubClientID

	
	✔

	
	
	

	githubClientSecret

	
	✔

	
	
	

	githubScope

	
	✔

	
	
	

	githubUserField

	
	✔

	
	
	

	globalLogoutCustomParam

	Custom session parameter to display

	✔

	
	
	

	globalLogoutRule

	Global logout activation rule

	✔

	
	
	

	globalLogoutTimer

	Global logout auto accept time

	✔

	
	
	

	globalStorage

	Session backend module

	✔

	✔

	
	

	globalStorageOptions

	Session backend module options

	✔

	✔

	
	

	gpgAuthnLevel

	GPG authentication level

	✔

	
	
	

	gpgDb

	GPG keys database

	✔

	
	
	

	grantSessionRules

	Rules to grant sessions

	✔

	
	
	

	groups

	Groups

	✔

	
	
	

	groupsBeforeMacros

	Compute groups before macros

	✔

	
	
	

	handlerInternalCache

	Handler internal cache timeout

	✔

	✔

	
	✔

	handlerServiceTokenTTL

	Handler ServiceToken timeout

	✔

	✔

	
	✔

	hiddenAttributes

	Name of attributes to hide in logs

	✔

	
	
	

	hideOldPassword

	Hide old password in portal

	✔

	
	
	

	httpOnly

	Enable httpOnly flag in cookie

	✔

	✔

	
	

	https

	Use HTTPS for redirection from portal

	
	✔

	
	

	impersonationHiddenAttributes

	Attributes to skip

	✔

	
	
	

	impersonationIdRule

	Impersonation identities rule

	✔

	
	
	

	impersonationMergeSSOgroups

	Merge spoofed and real SSO groups

	✔

	
	
	

	impersonationPrefix

	Prefix to rename real session attributes

	✔

	
	
	✔

	impersonationRule

	Impersonation activation rule

	✔

	
	
	

	impersonationSkipEmptyValues

	Skip session empty values

	✔

	
	
	

	impersonationUnrestrictedUsersRule

	Impersonation unrestricted users rule

	✔

	
	
	

	infoFormMethod

	HTTP method for info page form

	✔

	
	
	

	issuerDBCASActivation

	CAS server activation

	✔

	
	
	

	issuerDBCASPath

	CAS server request path

	✔

	
	
	

	issuerDBCASRule

	CAS server rule

	✔

	
	
	

	issuerDBGetActivation

	Get issuer activation

	✔

	
	
	

	issuerDBGetParameters

	List of virtualHosts with their get parameters

	✔

	
	
	

	issuerDBGetPath

	Get issuer request path

	✔

	
	
	

	issuerDBGetRule

	Get issuer rule

	✔

	
	
	

	issuerDBOpenIDActivation

	OpenID server activation

	✔

	
	
	

	issuerDBOpenIDConnectActivation

	OpenID Connect server activation

	✔

	
	
	

	issuerDBOpenIDConnectPath

	OpenID Connect server request path

	✔

	
	
	

	issuerDBOpenIDConnectRule

	OpenID Connect server rule

	✔

	
	
	

	issuerDBOpenIDPath

	OpenID server request path

	✔

	
	
	

	issuerDBOpenIDRule

	OpenID server rule

	✔

	
	
	

	issuerDBSAMLActivation

	SAML IDP activation

	✔

	
	
	

	issuerDBSAMLPath

	SAML IDP request path

	✔

	
	
	

	issuerDBSAMLRule

	SAML IDP rule

	✔

	
	
	

	issuersTimeout

	Token timeout for issuers

	✔

	
	
	

	jsRedirect

	Use javascript for redirections

	✔

	
	
	

	key

	Secret key

	✔

	
	
	

	krbAllowedDomains

	Allowed domains

	✔

	
	
	

	krbAuthnLevel

	Null authentication level

	✔

	
	
	

	krbByJs

	Launch Kerberos authentication by Ajax

	✔

	
	
	

	krbKeytab

	Kerberos keytab

	✔

	
	
	

	krbRemoveDomain

	Remove domain in Kerberos username

	✔

	
	
	

	ldapAllowResetExpiredPassword

	Allow a user to reset his expired password

	✔

	
	
	

	ldapAuthnLevel

	LDAP authentication level

	✔

	
	
	

	ldapBase

	LDAP search base

	✔

	
	
	

	ldapCAFile

	Location of the certificate file for LDAP connections

	✔

	
	
	

	ldapCAPath

	Location of the CA directory for LDAP connections

	✔

	
	
	

	ldapChangePasswordAsUser

	
	✔

	
	
	

	ldapExportedVars

	LDAP exported variables

	✔

	
	
	

	ldapGetUserBeforePasswordChange

	
	✔

	
	
	

	ldapGroupAttributeName

	LDAP attribute name for member in groups

	✔

	
	
	

	ldapGroupAttributeNameGroup

	LDAP attribute name in group entry referenced as member in groups

	✔

	
	
	

	ldapGroupAttributeNameSearch

	LDAP attributes to search in groups

	✔

	
	
	

	ldapGroupAttributeNameUser

	LDAP attribute name in user entry referenced as member in groups

	✔

	
	
	

	ldapGroupBase

	
	✔

	
	
	

	ldapGroupDecodeSearchedValue

	Decode value before searching it in LDAP groups

	✔

	
	
	

	ldapGroupObjectClass

	LDAP object class of groups

	✔

	
	
	

	ldapGroupRecursive

	LDAP recursive search in groups

	✔

	
	
	

	ldapIOTimeout

	LDAP operation timeout

	✔

	
	
	

	ldapITDS

	Support for IBM Tivoli Directory Server

	✔

	
	
	

	ldapPasswordResetAttribute

	LDAP password reset attribute

	✔

	
	
	

	ldapPasswordResetAttributeValue

	LDAP password reset value

	✔

	
	
	

	ldapPort

	LDAP port

	✔

	
	
	

	ldapPpolicyControl

	
	✔

	
	
	

	ldapPwdEnc

	LDAP password encoding

	✔

	
	
	

	ldapRaw

	
	✔

	
	
	

	ldapSearchDeref

	“deref” param of Net::LDAP::search()

	✔

	
	
	

	ldapServer

	LDAP server (host or URI)

	✔

	
	
	

	ldapSetPassword

	
	✔

	
	
	

	ldapTimeout

	LDAP connection timeout

	✔

	
	
	

	ldapUsePasswordResetAttribute

	LDAP store reset flag in an attribute

	✔

	
	
	

	ldapVerify

	Whether to validate LDAP certificates

	✔

	
	
	

	ldapVersion

	LDAP protocol version

	✔

	
	
	

	linkedInAuthnLevel

	LinkedIn authentication level

	✔

	
	
	

	linkedInClientID

	
	✔

	
	
	

	linkedInClientSecret

	
	✔

	
	
	

	linkedInFields

	
	✔

	
	
	

	linkedInScope

	
	✔

	
	
	

	linkedInUserField

	
	✔

	
	
	

	localSessionStorage

	Local sessions cache module

	✔

	
	
	

	localSessionStorageOptions

	Sessions cache module options

	✔

	
	
	

	localStorage

	Local cache

	✔

	✔

	✔

	✔

	localStorageOptions

	Local cache parameters

	✔

	✔

	✔

	✔

	log4perlConfFile

	Log4Perl logger configuration file

	✔

	✔

	✔

	✔

	logLevel

	Log level, must be set in .ini

	✔

	✔

	✔

	✔

	logger

	technical logger

	✔

	✔

	✔

	✔

	loginHistoryEnabled

	Enable login history

	✔

	
	
	

	logoutServices

	Send logout through GET request to these services

	✔

	
	
	

	lwpOpts

	Options given to LWP::UserAgent

	✔

	
	
	

	lwpSslOpts

	SSL options given to LWP::UserAgent

	✔

	
	
	

	macros

	Macros

	✔

	
	
	

	mail2fActivation

	Mail second factor activation

	✔

	
	
	

	mail2fAuthnLevel

	Authentication level for users authenticated by Mail second factor

	✔

	
	
	

	mail2fBody

	Mail body for second factor authentication

	✔

	
	
	

	mail2fCodeRegex

	Regular expression to create a mail OTP code

	✔

	
	
	

	mail2fLabel

	Portal label for Mail second factor

	✔

	
	
	

	mail2fLogo

	Custom logo for Mail 2F

	✔

	
	
	

	mail2fSessionKey

	Session parameter where mail is stored

	✔

	
	
	

	mail2fSubject

	Mail subject for second factor authentication

	✔

	
	
	

	mail2fTimeout

	Second factor code timeout

	✔

	
	
	

	mailBody

	Custom password reset mail body

	✔

	
	
	

	mailCharset

	Mail charset

	✔

	
	
	

	mailConfirmBody

	Custom confirm password reset mail body

	✔

	
	
	

	mailConfirmSubject

	Mail subject for reset confirmation

	✔

	
	
	

	mailFrom

	Sender email

	✔

	
	
	

	mailLDAPFilter

	LDAP filter for mail search

	✔

	
	
	

	mailOnPasswordChange

	Send a mail when password is changed

	✔

	
	
	

	mailReplyTo

	Reply-To address

	✔

	
	
	

	mailSessionKey

	Session parameter where mail is stored

	✔

	
	
	

	mailSubject

	Mail subject for new password email

	✔

	
	
	

	mailTimeout

	Mail password reset session timeout

	✔

	
	
	

	mailUrl

	URL of password reset page

	✔

	
	
	

	maintenance

	Maintenance mode for all virtual hosts

	
	✔

	
	

	managerDn

	LDAP manager DN

	✔

	
	
	

	managerPassword

	LDAP manager Password

	✔

	
	
	

	max2FDevices

	Maximum registered 2F devices

	✔

	
	
	✔

	max2FDevicesNameLength

	Maximum 2F devices name length

	✔

	
	
	✔

	multiValuesSeparator

	Separator for multiple values

	✔

	✔

	✔

	

	mySessionAuthorizedRWKeys

	Alterable session keys by user itself

	✔

	
	
	✔

	nginxCustomHandlers

	Custom Nginx handler (deprecated)

	✔

	
	
	

	noAjaxHook

	Avoid replacing 302 by 401 for Ajax responses

	✔

	
	
	

	notification

	Notification activation

	✔

	
	
	

	notificationDefaultCond

	Notification default condition

	✔

	
	
	

	notificationServer

	Notification server activation

	✔

	
	
	

	notificationServerDELETE

	Notification server activation

	✔

	
	
	

	notificationServerGET

	Notification server activation

	✔

	
	
	

	notificationServerPOST

	Notification server activation

	✔

	
	
	

	notificationServerSentAttributes

	Prameters to send with notification server GET method

	✔

	
	
	

	notificationStorage

	Notification backend

	✔

	
	
	

	notificationStorageOptions

	Notification backend options

	✔

	
	
	

	notificationWildcard

	Notification string to match all users

	✔

	
	
	

	notificationXSLTfile

	Custom XSLT document for notifications

	✔

	
	
	

	notificationsExplorer

	Notifications explorer activation

	✔

	
	
	

	notificationsMaxRetrieve

	Max number of displayed notifications

	✔

	
	
	✔

	notifyDeleted

	Show deleted sessions in portal

	✔

	
	
	

	notifyOther

	Show other sessions in portal

	✔

	
	
	

	nullAuthnLevel

	Null authentication level

	✔

	
	
	

	oidcAuthnLevel

	OpenID Connect authentication level

	✔

	
	
	

	oidcOPMetaDataOptions

	
	✔

	
	
	[1]

	oidcRPCallbackGetParam

	OpenID Connect Callback GET URLparameter

	✔

	
	
	

	oidcRPMetaDataOptions

	
	✔

	
	
	[1]

	oidcRPStateTimeout

	OpenID Connect Timeout of state sessions

	✔

	
	
	

	oidcServiceAccessTokenExpiration

	OpenID Connect global access token TTL

	✔

	
	
	

	oidcServiceAllowAuthorizationCodeFlow

	OpenID Connect allow authorization code flow

	✔

	
	
	

	oidcServiceAllowDynamicRegistration

	OpenID Connect allow dynamic client registration

	✔

	
	
	

	oidcServiceAllowHybridFlow

	OpenID Connect allow hybrid flow

	✔

	
	
	

	oidcServiceAllowImplicitFlow

	OpenID Connect allow implicit flow

	✔

	
	
	

	oidcServiceAuthorizationCodeExpiration

	OpenID Connect global code TTL

	✔

	
	
	

	oidcServiceDynamicRegistrationExportedVars

	OpenID Connect exported variables for dynamic registration

	✔

	
	
	

	oidcServiceDynamicRegistrationExtraClaims

	OpenID Connect extra claims for dynamic registration

	✔

	
	
	

	oidcServiceIDTokenExpiration

	OpenID Connect global ID token TTL

	✔

	
	
	

	oidcServiceKeyIdSig

	OpenID Connect Signature Key ID

	✔

	
	
	

	oidcServiceMetaDataAuthnContext

	OpenID Connect Authentication Context Class Ref

	✔

	
	
	

	oidcServiceMetaDataAuthorizeURI

	OpenID Connect authorizaton endpoint

	✔

	
	
	

	oidcServiceMetaDataBackChannelURI

	OpenID Connect Front-Channel logout endpoint

	✔

	
	
	

	oidcServiceMetaDataCheckSessionURI

	OpenID Connect check session iframe

	✔

	
	
	

	oidcServiceMetaDataEndSessionURI

	OpenID Connect end session endpoint

	✔

	
	
	

	oidcServiceMetaDataFrontChannelURI

	OpenID Connect Front-Channel logout endpoint

	✔

	
	
	

	oidcServiceMetaDataIntrospectionURI

	OpenID Connect introspection endpoint

	✔

	
	
	

	oidcServiceMetaDataIssuer

	OpenID Connect issuer

	✔

	
	
	

	oidcServiceMetaDataJWKSURI

	OpenID Connect JWKS endpoint

	✔

	
	
	

	oidcServiceMetaDataRegistrationURI

	OpenID Connect registration endpoint

	✔

	
	
	

	oidcServiceMetaDataTokenURI

	OpenID Connect token endpoint

	✔

	
	
	

	oidcServiceMetaDataUserInfoURI

	OpenID Connect user info endpoint

	✔

	
	
	

	oidcServiceOfflineSessionExpiration

	OpenID Connect global offline session TTL

	✔

	
	
	

	oidcServicePrivateKeySig

	
	✔

	
	
	

	oidcServicePublicKeySig

	
	✔

	
	
	

	oidcStorage

	Apache::Session module to store OIDC user data

	✔

	
	
	

	oidcStorageOptions

	Apache::Session module parameters

	✔

	
	
	

	oldNotifFormat

	Use old XML format for notifications

	✔

	
	
	

	openIdAttr

	
	✔

	
	
	

	openIdAuthnLevel

	OpenID authentication level

	✔

	
	
	

	openIdExportedVars

	OpenID exported variables

	✔

	
	
	

	openIdIDPList

	
	✔

	
	
	

	openIdIssuerSecret

	
	✔

	
	
	

	openIdSPList

	
	✔

	
	
	

	openIdSecret

	
	✔

	
	
	

	openIdSreg_country

	
	✔

	
	
	

	openIdSreg_dob

	
	✔

	
	
	

	openIdSreg_email

	OpenID SREG email session parameter

	✔

	
	
	

	openIdSreg_fullname

	OpenID SREG fullname session parameter

	✔

	
	
	

	openIdSreg_gender

	
	✔

	
	
	

	openIdSreg_language

	
	✔

	
	
	

	openIdSreg_nickname

	OpenID SREG nickname session parameter

	✔

	
	
	

	openIdSreg_postcode

	
	✔

	
	
	

	openIdSreg_timezone

	OpenID SREG timezone session parameter

	✔

	
	
	

	pamAuthnLevel

	PAM authentication level

	✔

	
	
	

	pamService

	PAM service

	✔

	
	
	

	passwordDB

	Password module

	✔

	
	
	

	passwordPolicyActivation

	Enable password policy

	✔

	
	
	

	passwordPolicyMinDigit

	Password policy: minimal digit characters

	✔

	
	
	

	passwordPolicyMinLower

	Password policy: minimal lower characters

	✔

	
	
	

	passwordPolicyMinSize

	Password policy: minimal size

	✔

	
	
	

	passwordPolicyMinSpeChar

	Password policy: minimal special characters

	✔

	
	
	

	passwordPolicyMinUpper

	Password policy: minimal upper characters

	✔

	
	
	

	passwordPolicySpecialChar

	Password policy: allowed special characters

	✔

	
	
	

	passwordResetAllowedRetries

	Maximum number of retries to reset password

	✔

	
	
	

	pdataDomain

	pdata cookie DNS domain

	✔

	✔

	
	✔

	persistentSessionAttributes

	Persistent session attributes to hide

	✔

	
	
	✔

	persistentStorage

	Storage module for persistent sessions

	✔

	
	
	

	persistentStorageOptions

	Options for persistent sessions storage module

	✔

	
	
	

	port

	Force port in redirection

	
	✔

	
	

	portal

	Portal URL

	✔

	✔

	✔

	

	portalAntiFrame

	Avoid portal to be displayed inside frames

	✔

	
	
	

	portalCheckLogins

	Display login history checkbox in portal

	✔

	
	
	

	portalCustomCss

	Path to custom CSS file

	✔

	
	
	

	portalDisplayAppslist

	Display applications tab in portal

	✔

	
	
	

	portalDisplayCertificateResetByMail

	Display certificate reset by mail button in portal

	✔

	
	
	

	portalDisplayChangePassword

	Display password tab in portal

	✔

	
	
	

	portalDisplayGeneratePassword

	Display password generate box in reset password form

	✔

	
	
	

	portalDisplayLoginHistory

	Display login history tab in portal

	✔

	
	
	

	portalDisplayLogout

	Display logout tab in portal

	✔

	
	
	

	portalDisplayOidcConsents

	Display OIDC consent tab in portal

	✔

	
	
	

	portalDisplayPasswordPolicy

	Display policy in password form

	✔

	
	
	

	portalDisplayRefreshMyRights

	Display link to refresh the user session

	✔

	
	
	

	portalDisplayRegister

	Display register button in portal

	✔

	
	
	

	portalDisplayResetPassword

	Display reset password button in portal

	✔

	
	
	

	portalErrorOnExpiredSession

	Show error if session is expired

	✔

	
	
	

	portalErrorOnMailNotFound

	Show error if mail is not found in password reset process

	✔

	
	
	

	portalForceAuthn

	Enable force to authenticate when displaying portal

	✔

	
	
	

	portalForceAuthnInterval

	Maximum interval in seconds since last authentication to force reauthentication

	✔

	
	
	

	portalMainLogo

	Portal main logo path

	✔

	
	
	

	portalOpenLinkInNewWindow

	Open applications in new windows

	✔

	
	
	

	portalPingInterval

	Interval in ms between portal Ajax pings

	✔

	
	
	

	portalRequireOldPassword

	Rule to require old password to change the password

	✔

	
	
	

	portalSkin

	Name of portal skin

	✔

	
	
	

	portalSkinBackground

	Background image of portal skin

	✔

	
	
	

	portalSkinRules

	Rules to choose portal skin

	✔

	
	
	

	portalStatus

	Enable portal status

	✔

	
	
	

	portalUserAttr

	Session parameter to display connected user in portal

	✔

	
	
	

	protection

	Manager protection method

	
	✔

	✔

	✔

	proxyAuthService

	
	✔

	
	
	

	proxyAuthnLevel

	Proxy authentication level

	✔

	
	
	

	proxySessionService

	
	✔

	
	
	

	proxyUseSoap

	Use SOAP instead of REST

	✔

	
	
	

	radius2fActivation

	Radius second factor activation

	✔

	
	
	

	radius2fAuthnLevel

	Authentication level for users authenticated by Radius second factor

	✔

	
	
	

	radius2fLabel

	Portal label for Radius 2F

	✔

	
	
	

	radius2fLogo

	Custom logo for Radius 2F

	✔

	
	
	

	radius2fSecret

	
	✔

	
	
	

	radius2fServer

	
	✔

	
	
	

	radius2fTimeout

	Radius 2f verification timeout

	✔

	
	
	

	radius2fUsernameSessionKey

	Session key used as Radius login

	✔

	
	
	

	radiusAuthnLevel

	Radius authentication level

	✔

	
	
	

	radiusSecret

	
	✔

	
	
	

	radiusServer

	
	✔

	
	
	

	randomPasswordRegexp

	Regular expression to create a random password

	✔

	
	
	

	redirectFormMethod

	HTTP method for redirect page form

	✔

	
	
	

	refreshSessions

	Refresh sessions plugin

	✔

	
	
	

	registerConfirmSubject

	Mail subject for register confirmation

	✔

	
	
	

	registerDB

	Register module

	✔

	
	
	

	registerDoneSubject

	Mail subject when register is done

	✔

	
	
	

	registerTimeout

	Register session timeout

	✔

	
	
	

	registerUrl

	URL of register page

	✔

	
	
	

	reloadTimeout

	Configuration reload timeout

	
	
	✔

	

	reloadUrls

	URL to call on reload

	✔

	
	
	

	remoteCookieName

	
	✔

	
	
	

	remoteGlobalStorage

	Remote session backend

	✔

	
	
	

	remoteGlobalStorageOptions

	Apache::Session module parameters

	✔

	
	
	

	remotePortal

	
	✔

	
	
	

	requireToken

	Enable token for forms

	✔

	
	
	

	rest2fActivation

	REST second factor activation

	✔

	
	
	

	rest2fAuthnLevel

	Authentication level for users authentified by REST second factor

	✔

	
	
	

	rest2fInitArgs

	Args for REST 2F init

	✔

	
	
	

	rest2fInitUrl

	REST 2F init URL

	✔

	
	
	

	rest2fLabel

	Portal label for REST second factor

	✔

	
	
	

	rest2fLogo

	Custom logo for REST 2F

	✔

	
	
	

	rest2fVerifyArgs

	Args for REST 2F init

	✔

	
	
	

	rest2fVerifyUrl

	REST 2F init URL

	✔

	
	
	

	restAuthServer

	Enable REST authentication server

	✔

	
	
	

	restAuthUrl

	
	✔

	
	
	

	restAuthnLevel

	REST authentication level

	✔

	
	
	

	restClockTolerance

	How tolerant the REST session server will be to clock dift

	✔

	
	
	

	restConfigServer

	Enable REST config server

	✔

	
	
	

	restExportSecretKeys

	Allow to export secret keys in REST session server

	✔

	
	
	

	restFindUserDBUrl

	
	✔

	
	
	

	restPasswordServer

	Enable REST password reset server

	✔

	
	
	

	restPwdConfirmUrl

	
	✔

	
	
	

	restPwdModifyUrl

	
	✔

	
	
	

	restSessionServer

	Enable REST session server

	✔

	
	
	

	restUserDBUrl

	
	✔

	
	
	

	sameSite

	Cookie SameSite value

	✔

	✔

	
	

	samlAttributeAuthorityDescriptorAttributeServiceSOAP

	SAML Attribute Authority SOAP

	✔

	
	
	

	samlAuthnContextMapKerberos

	SAML authn context kerberos level

	✔

	
	
	

	samlAuthnContextMapPassword

	SAML authn context password level

	✔

	
	
	

	samlAuthnContextMapPasswordProtectedTransport

	SAML authn context password protected transport level

	✔

	
	
	

	samlAuthnContextMapTLSClient

	SAML authn context TLS client level

	✔

	
	
	

	samlCommonDomainCookieActivation

	SAML CDC activation

	✔

	
	
	

	samlCommonDomainCookieDomain

	
	✔

	
	
	

	samlCommonDomainCookieReader

	
	✔

	
	
	

	samlCommonDomainCookieWriter

	
	✔

	
	
	

	samlDiscoveryProtocolActivation

	SAML Discovery Protocol activation

	✔

	
	
	

	samlDiscoveryProtocolIsPassive

	SAML Discovery Protocol Is Passive

	✔

	
	
	

	samlDiscoveryProtocolPolicy

	SAML Discovery Protocol Policy

	✔

	
	
	

	samlDiscoveryProtocolURL

	SAML Discovery Protocol EndPoint URL

	✔

	
	
	

	samlEntityID

	SAML service entityID

	✔

	
	
	

	samlIDPMetaDataOptions

	
	✔

	
	
	[1]

	samlIDPSSODescriptorArtifactResolutionServiceArtifact

	SAML IDP artifact resolution service

	✔

	
	
	

	samlIDPSSODescriptorSingleLogoutServiceHTTPPost

	SAML IDP SLO HTTP POST

	✔

	
	
	

	samlIDPSSODescriptorSingleLogoutServiceHTTPRedirect

	SAML IDP SLO HTTP Redirect

	✔

	
	
	

	samlIDPSSODescriptorSingleLogoutServiceSOAP

	SAML IDP SLO SOAP

	✔

	
	
	

	samlIDPSSODescriptorSingleSignOnServiceHTTPArtifact

	SAML IDP SSO HTTP Artifact

	✔

	
	
	

	samlIDPSSODescriptorSingleSignOnServiceHTTPPost

	SAML IDP SSO HTTP POST

	✔

	
	
	

	samlIDPSSODescriptorSingleSignOnServiceHTTPRedirect

	SAML IDP SSO HTTP Redirect

	✔

	
	
	

	samlIDPSSODescriptorWantAuthnRequestsSigned

	SAML IDP want authn request signed

	✔

	
	
	

	samlMetadataForceUTF8

	SAML force metadata UTF8 conversion

	✔

	
	
	

	samlNameIDFormatMapEmail

	SAML session parameter for NameID email

	✔

	
	
	

	samlNameIDFormatMapKerberos

	SAML session parameter for NameID kerberos

	✔

	
	
	

	samlNameIDFormatMapWindows

	SAML session parameter for NameID windows

	✔

	
	
	

	samlNameIDFormatMapX509

	SAML session parameter for NameID x509

	✔

	
	
	

	samlOrganizationDisplayName

	SAML service organization display name

	✔

	
	
	

	samlOrganizationName

	SAML service organization name

	✔

	
	
	

	samlOrganizationURL

	SAML service organization URL

	✔

	
	
	

	samlOverrideIDPEntityID

	Override SAML EntityID when acting as an IDP

	✔

	
	
	

	samlRelayStateTimeout

	SAML timeout of relay state

	✔

	
	
	

	samlSPMetaDataOptions

	
	✔

	
	
	[1]

	samlSPSSODescriptorArtifactResolutionServiceArtifact

	SAML SP artifact resolution service

	✔

	
	
	

	samlSPSSODescriptorAssertionConsumerServiceHTTPArtifact

	SAML SP ACS HTTP artifact

	✔

	
	
	

	samlSPSSODescriptorAssertionConsumerServiceHTTPPost

	SAML SP ACS HTTP POST

	✔

	
	
	

	samlSPSSODescriptorAuthnRequestsSigned

	SAML SP AuthnRequestsSigned

	✔

	
	
	

	samlSPSSODescriptorSingleLogoutServiceHTTPPost

	SAML SP SLO HTTP POST

	✔

	
	
	

	samlSPSSODescriptorSingleLogoutServiceHTTPRedirect

	SAML SP SLO HTTP Redirect

	✔

	
	
	

	samlSPSSODescriptorSingleLogoutServiceSOAP

	SAML SP SLO SOAP

	✔

	
	
	

	samlSPSSODescriptorWantAssertionsSigned

	SAML SP WantAssertionsSigned

	✔

	
	
	

	samlServicePrivateKeyEnc

	SAML encryption private key

	✔

	
	
	

	samlServicePrivateKeyEncPwd

	
	✔

	
	
	

	samlServicePrivateKeySig

	SAML signature private key

	✔

	
	
	

	samlServicePrivateKeySigPwd

	SAML signature private key password

	✔

	
	
	

	samlServicePublicKeyEnc

	SAML encryption public key

	✔

	
	
	

	samlServicePublicKeySig

	SAML signature public key

	✔

	
	
	

	samlServiceSignatureMethod

	
	✔

	
	
	

	samlServiceUseCertificateInResponse

	Use certificate instead of public key in SAML responses

	✔

	
	
	

	samlStorage

	Apache::Session module to store SAML user data

	✔

	
	
	

	samlStorageOptions

	Apache::Session module parameters

	✔

	
	
	

	samlUseQueryStringSpecific

	SAML use specific method for query_string

	✔

	
	
	

	secureTokenAllowOnError

	Secure Token allow requests in error

	
	✔

	
	✔

	secureTokenAttribute

	Secure Token attribute

	
	✔

	
	✔

	secureTokenExpiration

	Secure Token expiration

	
	✔

	
	✔

	secureTokenHeader

	Secure Token header

	
	✔

	
	✔

	secureTokenMemcachedServers

	Secure Token Memcached servers

	
	✔

	
	✔

	secureTokenUrls

	
	
	✔

	
	✔

	securedCookie

	Cookie securisation method

	✔

	✔

	
	

	sentryDsn

	Sentry logger DSN

	✔

	✔

	✔

	✔

	sessionDataToRemember

	Data to remember in login history

	✔

	
	
	

	sfEngine

	Second factor engine

	✔

	
	
	✔

	sfExtra

	Extra second factors

	✔

	
	
	

	sfManagerRule

	Rule to display second factor Manager link

	✔

	
	
	

	sfOnlyUpgrade

	Only trigger second factor on session upgrade

	✔

	
	
	

	sfRemovedMsgRule

	Display a message if at leat one expired SF has been removed

	✔

	
	
	

	sfRemovedNotifMsg

	Notification message

	✔

	
	
	

	sfRemovedNotifRef

	Notification reference

	✔

	
	
	

	sfRemovedNotifTitle

	Notification title

	✔

	
	
	

	sfRemovedUseNotif

	Use Notifications plugin to display message

	✔

	
	
	

	sfRequired

	Second factor required

	✔

	
	
	

	showLanguages

	Display langs icons

	✔

	
	
	

	singleIP

	Allow only one session per IP

	✔

	
	
	

	singleSession

	Allow only one session per user

	✔

	
	
	

	singleUserByIP

	Allow only one user per IP

	✔

	
	
	

	skipRenewConfirmation

	Avoid asking confirmation when an Issuer asks to renew auth

	✔

	
	
	

	skipUpgradeConfirmation

	Avoid asking confirmation during a session upgrade

	✔

	
	
	

	slaveAuthnLevel

	Slave authentication level

	✔

	
	
	

	slaveDisplayLogo

	Display Slave authentication logo

	✔

	
	
	

	slaveExportedVars

	Slave exported variables

	✔

	
	
	

	slaveHeaderContent

	
	✔

	
	
	

	slaveHeaderName

	
	✔

	
	
	

	slaveMasterIP

	
	✔

	
	
	

	slaveUserHeader

	
	✔

	
	
	

	soapConfigServer

	Enable SOAP config server

	✔

	
	
	

	soapProxyUrn

	SOAP URN for Proxy

	✔

	
	
	✔

	soapSessionServer

	Enable SOAP session server

	✔

	
	
	

	sslByAjax

	Use Ajax request for SSL

	✔

	
	
	

	sslHost

	URL for SSL Ajax request

	✔

	
	
	

	staticPrefix

	Prefix of static files for HTML templates

	✔

	
	
	✔

	status

	Status daemon activation

	
	✔

	
	✔

	stayConnected

	Enable StayConnected plugin

	✔

	
	
	

	stayConnectedCookieName

	Name of the stayConnected plugin cookie

	✔

	
	
	

	stayConnectedTimeout

	StayConnected persistent connexion session timeout

	
	
	✔

	

	storePassword

	Store password in session

	✔

	
	
	

	successLoginNumber

	Number of success stored in login history

	✔

	
	
	

	syslogFacility

	Syslog logger technical facility

	✔

	✔

	✔

	✔

	timeout

	Session timeout on server side

	✔

	
	
	

	timeoutActivity

	Session activity timeout on server side

	✔

	
	
	

	timeoutActivityInterval

	Update session timeout interval on server side

	✔

	
	
	

	tokenUseGlobalStorage

	Enable global token storage

	✔

	
	
	

	totp2fActivation

	TOTP activation

	✔

	
	
	

	totp2fAuthnLevel

	Authentication level for users authentified by password+TOTP

	✔

	
	
	

	totp2fDigits

	Number of digits for TOTP code

	✔

	
	
	

	totp2fDisplayExistingSecret

	Display existing TOTP secret in registration form

	✔

	
	
	

	totp2fInterval

	TOTP interval

	✔

	
	
	

	totp2fIssuer

	TOTP Issuer

	✔

	
	
	

	totp2fLabel

	Portal label for TOTP 2F

	✔

	
	
	

	totp2fLogo

	Custom logo for TOTP 2F

	✔

	
	
	

	totp2fRange

	TOTP range (number of interval to test)

	✔

	
	
	

	totp2fSelfRegistration

	TOTP self registration activation

	✔

	
	
	

	totp2fTTL

	TOTP device time to live

	✔

	
	
	

	totp2fUserCanChangeKey

	Authorize users to change existing TOTP secret

	✔

	
	
	

	totp2fUserCanRemoveKey

	Authorize users to remove existing TOTP secret

	✔

	
	
	

	trustedDomains

	Trusted domains

	✔

	
	
	

	twitterAppName

	
	✔

	
	
	

	twitterAuthnLevel

	Twitter authentication level

	✔

	
	
	

	twitterKey

	
	✔

	
	
	

	twitterSecret

	
	✔

	
	
	

	twitterUserField

	
	✔

	
	
	

	u2fActivation

	U2F activation

	✔

	
	
	

	u2fAuthnLevel

	Authentication level for users authentified by password+U2F

	✔

	
	
	

	u2fLabel

	Portal label for U2F

	✔

	
	
	

	u2fLogo

	Custom logo for U2F

	✔

	
	
	

	u2fSelfRegistration

	U2F self registration activation

	✔

	
	
	

	u2fTTL

	U2F device time to live

	✔

	
	
	

	u2fUserCanRemoveKey

	Authorize users to remove existing U2F key

	✔

	
	
	

	upgradeSession

	Upgrade session activation

	✔

	
	
	

	useRedirectOnError

	Use 302 redirect code for error (500)

	
	✔

	
	

	useRedirectOnForbidden

	Use 302 redirect code for forbidden (403)

	✔

	
	
	

	useSafeJail

	Activate Safe jail

	✔

	✔

	
	

	userControl

	Regular expression to validate login

	✔

	
	
	

	userDB

	User module

	✔

	
	
	

	userLogger

	User actions logger

	✔

	✔

	✔

	✔

	userPivot

	
	✔

	
	
	

	userSyslogFacility

	Syslog logger user-actions facility

	✔

	✔

	✔

	✔

	utotp2fActivation

	UTOTP activation (mixed U2F/TOTP module)

	✔

	
	
	

	utotp2fAuthnLevel

	Authentication level for users authentified by password+(U2F or TOTP)

	✔

	
	
	

	utotp2fLabel

	Portal label for U2F+TOTP

	✔

	
	
	

	utotp2fLogo

	Custom logo for U2F+TOTP

	✔

	
	
	

	vhostOptions

	
	✔

	
	
	[1]

	viewerAllowBrowser

	Allow configuration browser

	✔

	
	
	✔

	viewerAllowDiff

	Allow configuration diff

	✔

	
	
	✔

	viewerHiddenKeys

	Hidden Conf keys

	
	
	✔

	✔

	webIDAuthnLevel

	WebID authentication level

	✔

	
	
	

	webIDExportedVars

	WebID exported variables

	✔

	
	
	

	webIDWhitelist

	
	✔

	
	
	

	whatToTrace

	Session parameter used to fill REMOTE_USER

	✔

	✔

	
	

	wsdlServer

	Enable /portal.wsdl server

	✔

	
	
	

	yubikey2fActivation

	Yubikey second factor activation

	✔

	
	
	

	yubikey2fAuthnLevel

	Authentication level for users authentified by Yubikey second factor

	✔

	
	
	

	yubikey2fClientID

	Yubico client ID

	✔

	
	
	

	yubikey2fFromSessionAttribute

	Provision yubikey from the given session variable

	✔

	
	
	

	yubikey2fLabel

	Portal label for Yubikey second factor

	✔

	
	
	

	yubikey2fLogo

	Custom logo for Yubikey 2F

	✔

	
	
	

	yubikey2fNonce

	Yubico nonce

	✔

	
	
	

	yubikey2fPublicIDSize

	Yubikey public ID size

	✔

	
	
	

	yubikey2fSecretKey

	Yubico secret key

	✔

	
	
	

	yubikey2fSelfRegistration

	Yubikey self registration activation

	✔

	
	
	

	yubikey2fTTL

	Yubikey device time to live

	✔

	
	
	

	yubikey2fUrl

	Yubico server

	✔

	
	
	

	yubikey2fUserCanRemoveKey

	Authorize users to remove existing Yubikey

	✔

	
	
	

	zimbraAccountKey

	Zimbra account session key

	
	✔

	
	✔

	zimbraBy

	Zimbra account type

	
	✔

	
	✔

	zimbraPreAuthKey

	Zimbra preauthentication key

	
	✔

	
	✔

	zimbraSsoUrl

	Zimbra local SSO URL pattern

	
	✔

	
	✔

	zimbraUrl

	Zimbra preauthentication URL

	
	✔

	
	✔

[1]: complex nodes

Configuration backend parameters

	Full name

	Key name

	Configuration backend

	Configuration load timeout

	confTimeout

	all backends (default: 10)

	DBI connection string

	dbiChain

	CDBI / RDBI

	DBI user

	dbiUser

	

	DBI password

	dbiPassword

	

	DBI table name

	dbiTable

	

	Directory

	dirName

	File / YAML

	LDAP server

	ldapServer

	LDAP

	LDAP port

	ldapPort

	

	LDAP base

	ldapConfBase

	

	LDAP bind dn

	ldapBindDN

	

	LDAP bind password

	ldapBindPassword

	

	LDAP ObjectClass

	ldapObjectClass

	

	LDAP ID attribute

	ldapAttributeId

	

	LDAP content attribute

	ldapAttributeContent

	

	Certificate authorities file

	caFile

	

	Certificate authorities directory

	caPath

	

	MongoDB database

	dbName

	MongoDB

	MongoDB collection

	collectionName

	

	Pretty print

	prettyPrint

	File

	REST base URL

	baseUrl

	REST

	REST realm

	realm

	

	REST user

	user

	

	REST password

	password

	

	SOAP server location (URL)

	proxy

	SOAP

	LWP::UserAgent [http://search.cpan.org/perldoc?LWP::UserAgent] parameters

	proxyOptions

	

	SOAP user

	User

	

	SOAP password

	Password

	

Mini Howtos

	Command Line Interface (lemonldap-ng-cli) examples

	Manager protection

	Configure LemonLDAP::NG to use MySQL as main database

	Configure LemonLDAP::NG to use LDAP as main database

	Configure LemonLDAP::NG to use REST proxy mechanism

	Configure LemonLDAP::NG to use SOAP proxy mechanism

	Using LemonLDAP::NG with Active-Directory

	Kerberos

	LL::NG as federation protocol proxy

	Convert HTTP header into environment variable

	Connect to Renater Federation

	Running LemonLDAP::NG behind a reverse proxy

	Use an outgoing proxy

	Test OpenID Connect with command line tools

Command Line Interface (lemonldap-ng-cli) examples

This page shows some examples of LL::NG Command Line Interface. See
how to use the command.

Attention

On Debian, the command is located in
/usr/share/lemonldap-ng/bin and on CentOS in
/usr/libexec/lemonldap-ng/bin. Adapt the path for the system you are
using.

Save/restore configuration

This part requires LLNG 2.0.5 at least.

Save:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli save >config.json

Restore:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli restore config.json
Or
/usr/share/lemonldap-ng/bin/lemonldap-ng-cli restore - <config.json

Rollback (restore previous configuration, since 2.0.8):

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli rollback

Configure HTTPS

When setting HTTPS, you first need to modify Apache/Nginx configuration,
then you must configure LL::NG to change portal URL, Handler
redirections, cookie settings, …

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 portal https://auth.example.com \
 mailUrl https://auth.example.com/resetpwd \
 registerUrl https://auth.example.com/register \
 https 1 \
 securedCookie 1

Configure sessions backend

For production, it is recommended to use
Browseable session backend. Once tables
are created with columns corresponding to index, the following commands
can be executed to set all the session backends.

In this example we have:

	Backend: PostGreSQL

	DB user: lemonldaplogin

	DB password: lemonldappw

	Database: lemonldapdb

	Host: pg.example.com

	SSO sessions:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 delKey \
 globalStorageOptions Directory \
 globalStorageOptions LockDirectory

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 globalStorage Apache::Session::Browseable::Postgres

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 globalStorageOptions DataSource 'DBI:Pg:database=lemonldapdb;host=pg.example.com' \
 globalStorageOptions UserName 'lemonldaplogin' \
 globalStorageOptions Password 'lemonldappw' \
 globalStorageOptions Commit 1 \
 globalStorageOptions Index 'ipAddr _whatToTrace user' \
 globalStorageOptions TableName 'sessions'

	Persistent sessions:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 delKey \
 persistentStorageOptions Directory \
 persistentStorageOptions LockDirectory

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 persistentStorage Apache::Session::Browseable::Postgres

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 persistentStorageOptions DataSource 'DBI:Pg:database=lemonldapdb;host=pg.example.com' \
 persistentStorageOptions UserName 'lemonldaplogin' \
 persistentStorageOptions Password 'lemonldappw' \
 persistentStorageOptions Commit 1 \
 persistentStorageOptions Index '_session_uid' \
 persistentStorageOptions TableName 'psessions'

	CAS sessions

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 casStorage Apache::Session::Browseable::Postgres

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 casStorageOptions DataSource 'DBI:Pg:database=lemonldapdb;host=pg.example.com' \
 casStorageOptions UserName 'lemonldaplogin' \
 casStorageOptions Password 'lemonldappw' \
 casStorageOptions Commit 1 \
 casStorageOptions Index '_cas_id' \
 casStorageOptions TableName 'cassessions'

	SAML sessions

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 samlStorage Apache::Session::Browseable::Postgres

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 samlStorageOptions DataSource 'DBI:Pg:database=lemonldapdb;host=pg.example.com' \
 samlStorageOptions UserName 'lemonldaplogin' \
 samlStorageOptions Password 'lemonldappw' \
 samlStorageOptions Commit 1 \
 samlStorageOptions Index '_saml_id ProxyID _nameID _assert_id _art_id _session_id' \
 samlStorageOptions TableName 'samlsessions'

	OpenID Connect sessions

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 oidcStorage Apache::Session::Browseable::Postgres

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 oidcStorageOptions DataSource 'DBI:Pg:database=lemonldapdb;host=pg.example.com' \
 oidcStorageOptions UserName 'lemonldaplogin' \
 oidcStorageOptions Password 'lemonldappw' \
 oidcStorageOptions Commit 1 \
 oidcStorageOptions TableName 'oidcsessions'

Configure virtual host

A virtual host must be defined in Apache/Nginx and access rules and
exported headers must be configured in LL::NG.

In this example we have:

	host: test.example.com

	Access rules:

	default => accept

	Logout: ^/logout.php => logout_sso

	Headers:

	Auth-User: $uid

	Auth-Mail: $mail

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 'locationRules/test.example.com' 'default' 'accept' \
 'locationRules/test.example.com' '(?#Logout)^/logout\.php' 'logout_sso' \
 'exportedHeaders/test.example.com' 'Auth-User' '$uid' \
 'exportedHeaders/test.example.com' 'Auth-Mail' '$mail'

Configure form replay

To add form replay on a host, you need to set the catched URI and
the variables to post.

In this example we have:

	Host: test.example.com

	Catched URI: /login.php

	jQuery URL: default

	
	Variables:
	
	login: $uid

	password: $_password

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 -sep , \
 addKey \
 post,test.example.com,'/login.php' jqueryUrl default

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 -sep , \
 addPostVars \
 post,test.example.com,'/login.php' login '$uid' \
 post,test.example.com,'/login.php' password '$_password'

Configure LDAP authentication backend

In this example we use:

	LDAP server: ldap://ldap.example.com

	LDAP Bind DN : cn=lemonldapng,ou=dsa,dc=example,dc=com

	LDAP Bind PW: changeit

	LDAP search base: ou=users,dc=example,dc=com

	LDAP attributes:

	uid => uid

	cn => cn

	mail => mail

	sn => sn

	givenName => givenName

	mobile => mobile

	LDAP group base: ou=groups,dc=example,dc=com

	Use recursive search for groups

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 authentication LDAP \
 userDB LDAP \
 passwordDB LDAP \
 ldapServer 'ldap://ldap.example.com' \
 managerDn 'cn=lemonldapng,ou=dsa,dc=example,dc=com' \
 managerPassword 'changeit' \
 ldapBase 'ou=users,dc=example,dc=com'

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 ldapExportedVars uid uid \
 ldapExportedVars cn cn \
 ldapExportedVars sn sn \
 ldapExportedVars mobile mobile \
 ldapExportedVars mail mail \
 ldapExportedVars givenName givenName

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 ldapGroupBase 'ou=groups,dc=example,dc=com' \
 ldapGroupObjectClass groupOfNames \
 ldapGroupAttributeName member \
 ldapGroupAttributeNameGroup dn \
 ldapGroupAttributeNameSearch cn \
 ldapGroupAttributeNameUser dn \
 ldapGroupRecursive 1

Configure CAS Identity Provider

You just have to enable the CAS server feature, and you can set the
access control policy (see
CAS service options):

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 issuerDBCASActivation 1 \
 casAccessControlPolicy error

Register a CAS application

This is only required if your access control policy is not none.

In this example we have:

	App configuration key: testapp

	App service URL: https://testapp.example.com/

	App exported attribute: mail and cn

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 casAppMetaDataExportedVars/testapp mail mail \
 casAppMetaDataExportedVars/testapp cn cn
 casAppMetaDataOptions/testapp casAppMetaDataOptionsService 'https://testapp.example.com/'

Configure SAML Identity Provider

You can then generate a private key and a self-signed certificate with
these commands;

openssl req -new -newkey rsa:4096 -keyout saml.key -nodes -out saml.pem -x509 -days 3650

Fix the certificate key format (you can skip this step if you are
running >= 2.0.6)

sed -e "s/END PRIVATE/END RSA PRIVATE/" \
 -e "s/BEGIN PRIVATE/BEGIN RSA PRIVATE/" \
 -i saml.key

Import them in configuration and activate the SAML issuer

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 samlServicePrivateKeySig "`cat saml.key`" \
 samlServicePublicKeySig "`cat saml.pem`" \
 issuerDBSAMLActivation 1

You can also define organization name and URL for SAML metadata:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 samlOrganizationName 'ACME' \
 samlOrganizationDisplayName 'ACME Corporation' \
 samlOrganizationURL 'http://www.acme.com'

Register an SAML Service Provider

In this example we have:

	SP configuration key: testsp

	SP metadata file: metadata-testsp.xml

	SP exported attribute: EmailAdress (filled with mail session key)

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 samlSPMetaDataXML/testsp samlSPMetaDataXML "`cat metadata-testsp.xml`" \
 samlSPMetaDataExportedAttributes/testsp mail '1;EmailAddress'

Configure OpenID Connect Identity Provider

Activate the OpenID Connect Issuer and set issuer name (equal to portal
URL):

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 issuerDBOpenIDConnectActivation 1

Generate keys:

openssl genrsa -out oidc.key 4096
openssl rsa -pubout -in oidc.key -out oidc_pub.key

Import them:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 oidcServicePrivateKeySig "`cat oidc.key`" \
 oidcServicePublicKeySig "`cat oidc_pub.key`" \
 oidcServiceKeyIdSig "randomstring"

If needed you can allow implicit and hybrid flows:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 oidcServiceAllowImplicitFlow 1 \
 oidcServiceAllowHybridFlow 1

Register an OpenID Connect Relying Party

In this example we have:

	RP configuration key: testrp

	Client ID : testclientid

	Client secret : testclientsecret

	Allowed redirection URL:

	For login: https://testrp.example.com/?callback=1

	For logout: https://testrp.example.com/

	Exported attributes:

	email => mail

	familiy_name => sn

	name => cn

	Exported attributes:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataExportedVars/testrp email mail \
 oidcRPMetaDataExportedVars/testrp family_name sn \
 oidcRPMetaDataExportedVars/testrp name cn

	Credentials:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsClientID testclientid \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsClientSecret testclientsecret

	Redirection:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsRedirectUris 'https://testrp.example.com/?callback=1' \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsPostLogoutRedirectUris 'https://testrp.example.com/'

	Signature and token expiration:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsIDTokenSignAlg RS512 \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsIDTokenExpiration 3600 \
 oidcRPMetaDataOptions/testrp oidcRPMetaDataOptionsAccessTokenExpiration 3600

Categories and applications in menu

Create the category “applications”:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 applicationList/applications type category \
 applicationList/applications catname Applications

Create the application “sample” inside category “applications”:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 addKey \
 applicationList/applications/sample type application \
 applicationList/applications/sample/options description "A sample application" \
 applicationList/applications/sample/options display "auto" \
 applicationList/applications/sample/options logo "tux.png" \
 applicationList/applications/sample/options name "Sample application" \
 applicationList/applications/sample/options uri "https://sample.example.com/"

Encryption key

To update the master encryption key:

/usr/share/lemonldap-ng/bin/lemonldap-ng-cli -yes 1 \
 set \
 key 'xxxxxxxxxxxxxxx'

Sessions Management

New in version 2.0.9.

Get the content of a session

lemonldap-ng-sessions get 9684dd2a6489bf2be2fbdd799a8028e3

Get the content of a persistent session

lemonldap-ng-sessions get --persistent dwho

Search all sessions by username

lemonldap-ng-sessions search --where uid=dwho

Modify session

lemonldap-ng-sessions setKey 9684dd2a6489bf2be2fbdd799a8028e3 \
 authenticationLevel 1

New in version 2.0.10: Delete all sessions by username

lemonldap-ng-sessions delete --where uid=dwho

Second Factors management

New in version 2.0.9.

List second factors of a user

lemonldap-ng-sessions secondfactors get dwho

Deregister Yubikey of a user

lemonldap-ng-sessions secondfactors delType dwho UBK

OIDC Consents management

New in version 2.0.9.

List consents of a user

lemonldap-ng-sessions consents get dwho

Revoke consents on OIDC provider ‘test’ for a user:

lemonldap-ng-sessions consents delete dwho test

Manager protection

When installing LL::NG, the Manager can only be accessed with the demo
account dwho. This How To explains how change this default behavior
to protect Manager with other rules.

Apache based protection

Tip

Apache based protection allow one to be independent from
WebSSO, so Manager will always be reachable even if WebSSO configuration
is corrupted.

The configuration can be changed in etc/manager-apache2.conf, for
example to restrict the IP allowed to access the Manager:

<Directory /usr/local/lemonldap-ng/htdocs/manager/>
 Order deny,allow
 Deny from all
 Allow from 127.0.0.0/8 192.168.100.0/32
 Options +ExecCGI
</Directory>

But you will rather prefer to use an Apache authentication module, like
for example LDAP authentication
module [http://httpd.apache.org/docs/current/mod/mod_authnz_ldap.html]:

<Directory /usr/local/lemonldap-ng/htdocs/manager/>
 AuthzLDAPAuthoritative On
 AuthName "LL::NG Manager"
 AuthType Basic
 AuthBasicProvider ldap
 AuthLDAPBindDN "ou=websso,ou=applications,dc=example,dc=com"
 AuthLDAPBindPassword "secret"
 AuthLDAPURL ldap://localhost:389/ou=users,dc=example,dc=com???(objectClass=inetOrgPerson) TLS
 Require ldap-user coudot xguimard tchemineau
 Options +ExecCGI
</Directory>

Attention

You need to disable default Manager protection in
lemonldap-ng.ini to rely only on Apache:

[manager]
;protection = manager

LL::NG based protection

Danger

Before enabling Manager protection by LL::NG, you must
have configured how users authenticate on Portal, and test that you can
log in without difficulties. Else, you will lock access to Manager and
will never access it anymore.

By default, you will have a manager virtual host define in
configuration. If not Go on Manager, and declare Manager as a new
virtual host, for example
manager.example.com. You can then set the access rule. No headers
are needed.

The default rule is:

$uid eq "dwho"

You have to change it to match your admin user (or use other conditions
like group membership, or any other rule based on a session variable).

Save the configuration and exit the Manager.

Tip

The next time you will access Manager, it will be through
LL::NG.

Enable protection on Manager, by editing lemonldap-ng.ini:

[manager]
protection = manager

You can also adapt Apache access control:

<Directory /usr/local/lemonldap-ng/htdocs/manager/>
 Order deny,allow
 Allow from all
 Options +ExecCGI
</Directory>

Restart Apache and try to log on Manager. You should be redirected to
LL::NG Portal.

You can then add the Manager as
an application in the menu.

Tip

If for an obscure reason, the WebSSO is not working and you
want to access the Manager, remove the protection in
lemonldap-ng.ini. Add an Apache access control to avoid other
access.

Configure LemonLDAP::NG to use MySQL as main database

LL::NG use 2 internal databases to store its configuration and sessions.

Use MySQL for Lemonldap::NG configuration

Steps:

	Prepare the database and the LL::NG configuration file

	Convert existing configuration

	Restart all your Apache servers

Use MySQL for Lemonldap::NG sessions

Steps:

	Choose one of the following:

	Using Apache::Session::Browseable::MySQL
(recommended for best performances)

	Using Apache::Session::MySQL (if you
choose this option, then read
how to increase MySQL performances)

Configure LemonLDAP::NG to use LDAP as main database

LL::NG use 2 internal databases to store its configuration and sessions.

Use LDAP for configuration

Steps:

	Prepare the LDAP server and the LL::NG configuration file

	Convert existing configuration

	Restart all your Apache servers

Use LDAP for sessions

Steps:

	Follow LDAP session backend doc

Configure LemonLDAP::NG to use REST proxy mechanism

LL::NG use 2 internal databases to store its configuration and sessions.
It can be configured to use REST instead of direct access to those
databases (for remote servers).

Tip

This mechanism can be used to
secure access for remote servers that cross an unsecured network to
access to LL::NG databases.

Use REST for Lemonldap::NG configuration

Steps:

	Choose and configure your main configuration storage system

	Follow REST configuration backend page

	Restart all your remote Apache servers

Use REST for Lemonldap::NG sessions

Steps:

	Choose and configure your main sessions storage system

	Follow REST sessions backend page

Configure LemonLDAP::NG to use SOAP proxy mechanism

LL::NG use 2 internal databases to store its configuration and sessions.
It can be configured to use SOAP instead of direct access to those
databases (for remote servers).
.. tip:

This mechanism can be used to
secure access for remote servers that cross an unsecured network to
access to LL::NG databases.

Since version 2.0, same services are available by REST.

Use SOAP for Lemonldap::NG configuration

Steps:

	Choose and configure your main configuration storage system

	Follow SOAP configuration backend page

	Restart all your remote Apache servers

Use SOAP for Lemonldap::NG sessions

Steps:

	Choose and configure your main sessions storage system

	Follow SOAP sessions backend page

Using LemonLDAP::NG with Active-Directory

Authentication with login/password

To use Active Directory as LDAP backend, you must change few things in
the manager :

	Use “Active Directory” as authentication, userDB and
passwordDBbackends,

	Export sAMAccountName in a variable declared in
exported variables

	Change the user attribute to store in Apache logs (“General
Parameters » Logs » REMOTE_USER”): use the variable declared above

Authentication with Kerberos

	Choose “Apache” as authentication module (“General Parameters »
Authentication modules » Authentication module”)

	Configure the Apache server that host the portal
to use the Apache Kerberos authentication module

Kerberos

Presentation

This documentation will explain how to use Active Directory as Kerberos
server, and provide transparent authentication for one or multiple AD
domains.

You can use Kerberos in LL::NG with the following authentication
modules:

	Kerberos (recommended): use Perl GSSAPI module,
compatible with Apache and Nginx

	Apache: use mod_auth_kerb or mod_auth_gssapi in
Apache

Prerequisites

Example values

We will use the following values in our examples

	EXAMPLE.COM: First AD domain

	ACME.COM: Second AD domain

	auth.example.com: DNS of the LL::NG portal

	KERB_AUTH: AD account to generate the keytab for LL::NG server

Server time

It is mandatory that LL::NG servers and AD servers have the same time.
It is recommended to use NTP to do this.

DNS

In our experience, we have observed the following limitations when using Kerberos for web applications in an Active Directory environment

	auth.example.com must be registered in the DNS server as a A record. CNAME usually do not work

	The reverse DNS (PTR) for auth.example.com’s IP address MUST point back to auth.example.com

Tip

If you have a SSO cluster, you must setup a Virtual IP in
cluster and register this IP in DNS.

Tip

If you cannot configure the PTR record to point to the portal’s hostname, it
may help to run the following command. Assuming that proxy.example.com is
the PTR record of the portal’s IP address

setspn -s HTTP/proxy.example.com keytab-account

SSL

SSL is not mandatory, but it is strongly recommended. Your portal URL
should be https://auth.example.com.

Web browser configuration

Firefox

Type about:config in a tab and search for trusted. Then edit the
property network.negotiate-auth.trusted-uris and set value
example.com.

Internet Explorer

Add https://auth.example.com as trusted site.

Check into security parameters that Kerberos authentication is allowed.

Single AD domain

Client Kerberos configuration

On LL::NG server, edit /etc/krb5.conf:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_kdc = false
 dns_lookup_realm = no
 ticket_lifetime = 24h
 forwardable = yes
 renewable = true

[realms]
 EXAMPLE.COM = {
 kdc = ad.example.com
 admin_server = ad.example.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

You can check that Kerberos is working by trying to get a ticket for a
user of the domain (for example coudot):

kinit coudot@EXAMPLE.COM

You should be prompted to enter password. Then list the tickets:

klist -e

You should see a krbtgt ticket:

Valid starting Expires Service principal
06/04/15 15:43:24 06/05/15 01:43:29 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 renew until 06/05/15 15:43:24, Etype (skey, tkt): aes256-cts-hmac-sha1-96, aes256-cts-hmac-sha1-96

You can then close the Kerberos session:

kdestroy

Obtain keytab file

You have to run this command on Active Directory:

ktpass -princ HTTP/auth.example.com@EXAMPLE.COM -mapuser KERB_AUTH@EXAMPLE.COM -crypto All -ptype KRB5_NT_PRINCIPAL -mapOp set -pass <PASSWORD> -out c:\auth.keytab

Attention

The values passed in -crypto and -ptype depend on the
Active Directory version and the windows version of the workstations.
You can for example use RC4-HMAC-NT as crypto protocol if DES is not
supported by workstations (this the case by default for Window 8 for
example).

The file auth.keytab should then be copied (with a secure media) to
the Linux server (for example in /etc/lemonldap-ng).

Change rights on keytab file:

chown apache /etc/lemonldap-ng/auth.keytab
chmod 600 /etc/lemonldap-ng/auth.keytab

You can check the validity of the keytab file by trying to request a
service ticket, and compare the result with the keytab content.

Open a Kerberos session (like done in the previous step):

kinit coudot@example.com

Request a service ticket:

kvno HTTP/auth.example.com@EXAMPLE.COM

The result of the command should be:

HTTP/auth.example.com@EXAMPLE.COM: kvno = 3

Read the service ticket:

klist -e

You should see this kind of ticket:

06/04/15 16:28:49 06/05/15 02:28:11 HTTP/auth.example.com@EXAMPLE.COM
 renew until 06/05/15 16:28:07, Etype (skey, tkt): arcfour-hmac, arcfour-hmac

You can close the Kerberos session:

kdestroy

Now you can compare the above result with the same request done through
the keytab file:

klist -e -k -t /etc/lemonldap-ng/auth.keytab

The result of the command should be:

Keytab name: FILE:/etc/lemonldap-ng/auth.keytab
KVNO Timestamp Principal
---- ----------------- --
 3 01/01/70 01:00:00 HTTP/auth.example.com@EXAMPLE.COM (arcfour-hmac)

The important things to check are:

	KVNO must be the same

	Principal names must be the same

	Encryption types must be the same

Multiple AD domains

Client Kerberos configuration

The two domains must be defined in /etc/krb5.conf:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_kdc = false
 dns_lookup_realm = no
 ticket_lifetime = 24h
 forwardable = yes
 renewable = true

[realms]
 EXAMPLE.COM = {
 kdc = ad.example.com
 admin_server = ad.example.com
 default_domain = EXAMPLE.COM
 }
 ACME.COM = {
 kdc = ad.acme.com
 admin_server = ad.acme.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .acme.com = ACME.COM
 acme.com = ACME.COM

You should then be able to open a Kerberos session on each domain:

kinit coudot@EXAMPLE.COM
klist -e
kdestroy

kinit coudot@ACME.COM
klist -e
kdestroy

Obtain keytab file

You need to obtain a keytab for each node on each domain. This means the
ktpass commands should be run on both AD.

Then you will have 2 keytab files for each node, for example:

	node1-example.keytab

	node1-acme.keytab

You need to concatenate the keytab files, thanks to ktutil command:

ktutil
ktutil: read_kt node1-example.keytab
ktutil: read_kt node1-acme.keytab
ktutil: write_kt /etc/lemonldap-ng/auth.keytab
ktutil: quit

You can then remove the original keytab files and protect the final
keytab file:

chown apache /etc/lemonldap-ng/auth.keytab
chmod 600 /etc/lemonldap-ng/auth.keytab

Other resources

You can check these documentations to get more information:

	http://modauthkerb.sourceforge.net/configure.html

	http://www.grolmsnet.de/kerbtut/

LL::NG as federation protocol proxy

LL::NG can use federation protocols (SAML, CAS, OpenID) independently
to:

	authenticate users

	provide identities to other systems

So you can configure it to authenticate users using a federation
protocol and simultaneously to provide identities using other(s)
federation protocols.

Schemes tested:

	SAML / OpenID-Connect:

	SAML-SP <=> LLNG as
SAML/OpenID-Connect
proxy <=> OIDC Provider

	OIDC-RP <=> LLNG as
OpenID-Connect/SAML
proxy <=> SAML Identity Provider

	SAML / CAS

	SAML-SP <=> LLNG as SAML/CAS
proxy <=> CAS Server

	CAS Application <=> LLNG as
CAS/SAML proxy <=> SAML
Identity Provider

Note that OpenID-Connect consortium hasn’t already defined single-logout
initiated by OpenID-Connect Provider. LLNG will implement it when this
standard will be published.

Attention

Federation proxy installation can be complex. Don’t
hesitate to contact us on lemonldap-ng-users@ow2.org

See the following chapters:

	Authentication protocols

	Identity provider

Convert HTTP header into environment variable

Apache

Using LL::NG in reverse proxy mode, you will not have the
REMOTE_USER environment variable set. Indeed, this variable is set
by the Handler on the physical server hosting the Handler, and not on
other servers where the Handler is not installed.

Apache SetEnvIf
module [http://httpd.apache.org/docs/current/mod/mod_setenvif.html]
will let you transform the Auth-User HTTP header in REMOTE_USER
environment variable:

SetEnvIfNoCase Auth-User "(.*)" REMOTE_USER=$1

This can be used to protect applications relying on REMOTE_USER
environment variable in reverse proxy mode. In this case you will have
two Apache configuration files:

	Apache configuration file on LL::NG reverse proxy (hosting LL::NG
Handler):

<VirtualHost *:80>
 ServerName application.example.com

 PerlHeaderParserHandler Lemonldap::NG::Handler::ApacheMP2

 ProxyPreserveHost on
 ProxyPass / http://APPLICATION_IP/
 ProxyPassReverse / http://APPLICATION_IP/

</VirtualHost>

	Apache configuration file on application server (hosting the
application):

<VirtualHost *:80>
 ServerName application.example.com

 SetEnvIfNoCase Auth-User "(.*)" REMOTE_USER=$1

 DocumentRoot /var/www/application

</VirtualHost>

Tip

Sometimes, PHP applications also check the PHP_AUTH_USER and
PHP_AUHT_PW environment variables. You can set them the same way:

SetEnvIfNoCase Auth-User "(.*)" PHP_AUTH_USER=$1
SetEnvIfNoCase Auth-Password "(.*)" PHP_AUTH_PW=$1

Of course, you need to store password in session
to fill PHP_AUTH_PW.

Nginx

Nginx doesn’t launch directly PHP pages (or other languages): it dials
with FastCGI servers (like php-fpm). As you can see in examples, it’s
easy to map a LLNG header to a fastcgi param. Example:

auth_request_set $authuser $upstream_http_auth_user;
fastcgi_param HTTP_MYVAR $authuser;

Connect to Renater Federation

[image: image0]

Presentation

Renater [https://www.renater.fr/] provides an SAML federation for
higher education in France.

It is based on SAMLv2 but add some specific items like a WAYF service
and a metadata bundle to list all SP and IDP from the federation.

Since LL::NG 2.0, you can register into Renater federation.

Register as Service Provider

LL::NG configuration

Configure LL::NG as SAML Service Provider with this
documentation. You don’t need to declare any IDP for
the moment.

Configure SAML Discovery Protocol
to redirect users on WAYF Service. The endpoint URL is
https://discovery.renater.fr/renater/WAYF.

Metadata import

You now need to import IDP metadata in LL::NG configuration. Use the
importMetadata script that should be installed in
/usr/share/lemonldap-ng/bin. You need to select the correct metadata
bundle proposed by Renater:
https://services.renater.fr/federation/technique/metadata.

For Renater, you need to customize some settings of the script, copy it
and edit configuration:

cp /usr/share/lemonldap-ng/bin/importMetadata /usr/share/lemonldap-ng/bin/importMetadataRenater
vi /usr/share/lemonldap-ng/bin/importMetadataRenater

Set attributes (use the SAML Name, not FriendlyName) that are provided
by IDPs, for example:

my $exportedAttributes = {
 'cn' => '0;urn:oid:2.5.4.3',
 'eduPersonPrincipalName' => '1;urn:oid:1.3.6.1.4.1.5923.1.1.1.6',
 'givenName' => '0;urn:oid:2.5.4.42',
 'sn' => '0;urn:oid:2.5.4.4',
 'eduPersonAffiliation' => '0;urn:oid:1.3.6.1.4.1.5923.1.1.1.1',
 'eduPersonPrimaryAffiliation' => '0;urn:oid:1.3.6.1.4.1.5923.1.1.1.5',
 'mail' => '0;urn:oid:0.9.2342.19200300.100.1.3',
 'supannListeRouge' => '0;urn:oid:1.3.6.1.4.1.7135.1.2.1.1',
 'supannEtuCursusAnnee' => '0;rn:oid:1.3.6.1.4.1.5923.1.1.1.10',
};

Adapt IDP options, for example:

my $idpOptions = {
 'samlIDPMetaDataOptionsAdaptSessionUtime' => 0,
 'samlIDPMetaDataOptionsAllowLoginFromIDP' => 0,
 'samlIDPMetaDataOptionsAllowProxiedAuthn' => 0,
 'samlIDPMetaDataOptionsCheckAudience' => 1,
 'samlIDPMetaDataOptionsCheckSLOMessageSignature' => 1,
 'samlIDPMetaDataOptionsCheckSSOMessageSignature' => 1,
 'samlIDPMetaDataOptionsCheckTime' => 1,
 'samlIDPMetaDataOptionsEncryptionMode' => 'none',
 'samlIDPMetaDataOptionsForceAuthn' => 0,
 'samlIDPMetaDataOptionsForceUTF8' => 1,
 'samlIDPMetaDataOptionsIsPassive' => 0,
 'samlIDPMetaDataOptionsNameIDFormat' => 'transient',
 'samlIDPMetaDataOptionsRelayStateURL' => 0,
 'samlIDPMetaDataOptionsSignSLOMessage' => -1,
 'samlIDPMetaDataOptionsSignSSOMessage' => -1,
 'samlIDPMetaDataOptionsStoreSAMLToken' => 0,
 'samlIDPMetaDataOptionsUserAttribute' => 'urn:oid:1.3.6.1.4.1.5923.1.1.1.6',
};

Then run the script:

/usr/share/lemonldap-ng/bin/importMetadataRenater -m https://metadata.federation.renater.fr/renater/main/main-idps-renater-metadata.xml -r -i "idp-renater-" -s "sp-renater-"

Attention

You need to add this in cron to refresh metadata into
LL::NG configuration.

Add your SP into the federation

Go to https://federation.renater.fr/registry and register your SP.

Attention

Be sure to check all attributes as mandatory to be able
to get them in SAML assertions.

Register as Identity Provider

LL::NG configuration

Configure LL::NG as SAML Identity Provider with this
documentation. You don’t need to declare any SP for the
moment.

Attention

If your LL::NG server will act as SP and IDP inside
Renater federation, you need to set the advanced parameter “Override
Entity ID for IDP”. Indeed, Renater do not allow to register a SP and an
IDP with the same entityID.

Metadata import

You now need to import SP metadata in LL::NG configuration. Use the
importMetadata script that should be installed in
/usr/share/lemonldap-ng/bin. You need to select the correct metadata
bundle proposed by Renater:
https://services.renater.fr/federation/technique/metadata.

For Renater, you may need to customize some settings of the script, copy
it and edit configuration:

cp /usr/share/lemonldap-ng/bin/importMetadata /usr/share/lemonldap-ng/bin/importMetadataRenater
vi /usr/share/lemonldap-ng/bin/importMetadataRenater

Adapt IDP options, for example:

my $spOptions = {
 'samlSPMetaDataOptionsCheckSLOMessageSignature' => 1,
 'samlSPMetaDataOptionsCheckSSOMessageSignature' => 1,
 'samlSPMetaDataOptionsEnableIDPInitiatedURL' => 0,
 'samlSPMetaDataOptionsEncryptionMode' => 'none',
 'samlSPMetaDataOptionsForceUTF8' => 1,
 'samlSPMetaDataOptionsNameIDFormat' => '',
 'samlSPMetaDataOptionsNotOnOrAfterTimeout' => 72000,
 'samlSPMetaDataOptionsOneTimeUse' => 0,
 'samlSPMetaDataOptionsSessionNotOnOrAfterTimeout' => 72000,
 'samlSPMetaDataOptionsSignSLOMessage' => 1,
 'samlSPMetaDataOptionsSignSSOMessage' => 1
};

Then run the script:

/usr/share/lemonldap-ng/bin/importMetadataRenater -m https://metadata.federation.renater.fr/renater/main/main-sps-renater-metadata.xml -r -i "idp-renater" -s "sp-renater"

Attention

You need to add this in cron to refresh metadata into
LL::NG configuration.

Add your IDP into the federation

Go to https://federation.renater.fr/registry and register your IDP.

Running LemonLDAP::NG behind a reverse proxy

Your network infrastructure might require that LemonLDAP::NG components
(Portal, Manager, Handler) run behind a reverse proxy.

[image: image0]

Transmitting the correct IP address to the portal

In this case, LemonLDAP::NG components will store the ip address of the
connection between the reverse proxy and the webserver in the session,
and in logs. This prevents features such as session restrictions and
rules based on `ipAddr` from working as expected.

A Content Delivery Network (CDN) would also have the same issue.

In order to make LemonLDAP::NG behave correctly behind a proxy, you need
to forward the original IP address all the way to LemonLDAP::NG.

In order to do this you have several options.

HTTP Header

This generic method is the most likely to work in your particular
environment.

First, configure your reverse proxy (or CDN) to send the origin IP
address in a HTTP header. Most reverse proxies do this by default,
generally in a header named X-Forwarded-For or X-Real-IP.

Once the header is transmitted to LemonLDAP::NG’s web server, you may
uncomment the relevant parts of the configuration file.

	For Nginx:

set_real_ip_from 127.0.0.1;
real_ip_header X-Forwarded-For;

Tip

Make sure Nginx was compiled with the http_real_ip
module [http://nginx.org/en/docs/http/ngx_http_realip_module.html]

	For Apache:

RemoteIPHeader X-Forwarded-For
RemoteIPInternalProxy 127.0.0.1

Tip

Make sure the mod_remoteip
module [https://httpd.apache.org/docs/2.4/mod/mod_remoteip.html] is
enabled in your Apache installation

Danger

Both modules need you to specify the address of your
reverse proxy. Using the http_real_ip or mod_remoteip module
might let an attacker impersonate any IP address they want by setting
the X-Forwarded-For header themselves. Please read the relevant
module documentation carefully.

PROXY Protocol

Alternatively, if your proxy supports the PROXY protocol (Nginx,
HAProxy, Amazon ELB), you may use it to carry over the information
almost transparently.

Refer to your reverse proxy’s documentation to find out how to enable
the PROXY protocol on the reverse proxy side.

Then, on the LemonLDAP::NG side, in the NGINX configuration of your
Portal/Manager/Handler:

 listen 80 proxy_protocol;
or
listen 443 ssl proxy_protocol;

set_real_ip_from 127.0.0.1;
real_ip_header proxy_protocol;

Fixing handler redirections

If your handler server runs behind a reverse proxy, it may have trouble figuring
out the right URL to redirect you to after logging in.

In this case, you can force a particular port and scheme in the Virtual Host’s
Options.

But is instead you want this scheme to be auto-detected by LemonLDAP (in order to have a
same VHost domain available over multiple schemes), you can also use the following
declarations in the handler’s virtual host to force LemonLDAP to use the correct port
and scheme

Nginx

fastcgi_param SERVER_PORT 443
fastcgi_param HTTPS On

Apache

PerlSetEnv SERVER_PORT 443
PerlSetEnv HTTPS On

Use an outgoing proxy

For some protocols, LL::NG has to directly contact the external server.
This is the case for example with CAS authentication (validation of
service ticket) or OpenID Connect authentication (access to token
endpoint and userinfo endpoint).

If the LL::NG server needs a proxy for outgoing connections, then you
need to configure some environment variables.

Apache

In Apache configuration, set:

FcgidInitialEnv http_proxy http://X.X.X.X:X
FcgidInitialEnv https_proxy http://X.X.X.X:X
on Centos7, you need LWP::Protocol::connect
FcgidInitialEnv https_proxy connect://X.X.X.X:X

Nginx/FastCGI

add in /etc/default/lemonldap-ng-fastcgi-server :

http_proxy=http://X.X.X.X:X
https_proxy=http://X.X.X.X:X
on Centos7, you need LWP::Protocol::connect
https_proxy=connect://X.X.X.X:X

Test OpenID Connect with command line tools

We present here how to test the OpenID Connect protocol (authorization code flow) with commande line tools, like curl.

We use in this example a public OIDC provider based on LL::NG: https://oidctest.wsweet.org

Authentication

	The first step is to obtain a valid SSO session on the portal. Several solutions:
	
	Use a web browser and log into the portal, then get the value of the SSO cookie

	Use portal REST API, and adapt the requireToken configuration to get cookie value in JSON response (see REST services)

Example of REST service usage, with credentials dwho/dwho:

curl -X POST -d user=dwho -d password=dwho -H 'Accept: application/json' 'https://oidctest.wsweet.org/oauth2/'

The session id is displayed in JSON response:

{
 "error" : "0",
 "id" : "0640f95827111f00ba7ad5863ba819fe46cfbcecdb18ce525836369fb4c8350b",
 "result" : 1
}

Authorization code

In the first step of authorization code flow, we request a temporary code, ont the authorize end point.

	Parameters needed:
	
	SSO session id (will be passed in lemonldap cookie, adapt the name if needed)

	Client ID: given by your OIDC provider, we use here private

	Scope: depends on which information you need, we will use here openid profile email

	Redirect URI: shoud match the value registered in your OIDC provider, we will use here http://localhost

The OIDC provide will return the code in the location header, so we just output this reponse header:

curl -s -D - -o /dev/null -b lemonldap=0640f95827111f00ba7ad5863ba819fe46cfbcecdb18ce525836369fb4c8350b 'https://oidctest.wsweet.org/oauth2/authorize?response_type=code&client_id=private&scope=openid+profile+email&redirect_uri=http://localhost' | grep '^location'

The value of the location header is:

location: http://localhost?code=294b0facd91a0fa92762edc48d18369e99c330ba2b8fb05ab2c45999fcef6e17&session_state=BpB8KRMBEDUs%2B7lAjsz4DRk3E0RJImxgUbMsCFFAUa8%3D.N3dVOFg3a2RpNXVJK3ltSldrYXZjUjhtU0tvd29sWkpuWWJJbll5ZGs5NzhZMnh5bmQwd0IxRmJVWUxJSTlkWDBnSWZ2SWFVZmU0UnRaMkVJVjNUY3c9PQ

So we get the code value: 94b0facd91a0fa92762edc48d18369e99c330ba2b8fb05ab2c45999fcef6e17

This code has a short lifetime, we will use it to get access token and ID token in the next step

Tokens

	In this step, we exchange the authorization code against tokens:
	
	Access token

	ID token

	Refresh token (optional)

	Parameters needed:
	
	Authorization code: see previous step

	Grant type: we use here authorization_code

	Redirect URI: same value as the one used in the previous step

	Client ID and Client Secret: given by your OIDC provider, we use here private/tardis

curl -X POST -d grant_type=authorization_code -d 'redirect_uri=http://localhost' -d code=94b0facd91a0fa92762edc48d18369e99c330ba2b8fb05ab2c45999fcef6e17 -u 'private:tardis' 'https://oidctest.wsweet.org/oauth2/token' | json_pp

The JSON response looks like this:

{
 "access_token" : "a88b8dde538719e55c3cb8fbd14d06ed77853c685a62abf6ecb88d86228a9c64",
 "expires_in" : 3600,
 "id_token" : "eyJhbGciOiJSUzI1NiIsImtpZCI6Im9pZGN0ZXN0IiwidHlwIjoiSldUIn0.eyJhdXRoX3RpbWUiOjE2MTQxNjAwMDYsImlhdCI6MTYxNDE2MzIxOCwiaXNzIjoiaHR0cHM6Ly9vaWRjdGVzdC53c3dlZXQub3JnLyIsImF0X2hhc2giOiJIVGswOVNjSjRObEFua3k5SGFFX2VRIiwiYWNyIjoibG9hLTIiLCJleHAiOjE2MTQxNjY4MTgsInN1YiI6ImR3aG8iLCJhenAiOiJwcml2YXRlIiwiYXVkIjpbInByaXZhdGUiXX0.N3TNufjKLzKM3qiIitA7JHUei4L572XjF6AcVl7UAFB6efdGUCiAL7amlUl0FgjZfzW9bzvulBVDidoYSicIaysIdI4KkjmjpVN0Z3gOSu0ecuk5p8fD1KbX6-tmA3txeR18nzfhdckq-S-6Lx7wrWpPNyrzGx-FImbOaUPN2yeVhKPXhdyHJbzI0RqJETxnBkyW-CLEzAJyq3rCUVX-D8kHADvg6a42QQyPdxvBuGrdBfyDDDb_Py13H1qhn40NnuFknR1wSahsY6U97uUooyk-0_U4J3XJAHySjCtivtSeP0fM_5eblMuh6WdVjrfnUF0xnCTbCa2gYRlTS38BkqcsWY26PXoRAOo31a1cmB5sMSZyPtRF9UZcmGiNBIymMMdFgVAJONb6uliiTS5j9-nkmHOqVC-XJ6tuiU3ZSBQ8nCRyNW2LaCzpJ5c3ytP9yYQtyT8HmhN0VnXob3K1uJEA_Xcu4sADjtrm-LbrGiwaVMkfu-C6YIrbuC9riOW6TneV2gAzAjXPOW_UZeXrCrx66GHIJPsJIq29UfbTN5Pxo9SH2yKw6PSfxevkZhBIhEXCOMaIUHrlWz2jDBBzPIWeiSRbK_MRtejQmdRUs8nqdq-McVwnFiUMDt1KZXxqScTtMDF_Lo9oK2RaCijEJ7MSPEscr_YOyp3KIq2FLVg",
 "refresh_token" : "19434440ed4da2803e8ba9d91cb2eabd5b8bd12af2609429bda03ed487e6ef57",
 "token_type" : "Bearer"
}

The access token will be used for the last step, to get information about the user.

The ID Token is a JWT (JSON Web Token) and can be parsed easily, as this is the concatenation of 3 JSON strings encoded in base 64: base64(header).base64(payload).base64(signature).

Decoding the payload gives:

{
 "acr" : "loa-2",
 "at_hash" : "HTk09ScJ4NlAnky9HaE_eQ",
 "aud" : [
 "private"
],
 "auth_time" : 1614160006,
 "azp" : "private",
 "exp" : 1614166818,
 "iat" : 1614163218,
 "iss" : "https://oidctest.wsweet.org/",
 "sub" : "dwho"
}

User info

This step is optional and allows to fetch user information linked to scopes requested in the first step.

	Parameters needed:
	
	Access token, used as bearer authorization

curl -H 'Authorization: Bearer a88b8dde538719e55c3cb8fbd14d06ed77853c685a62abf6ecb88d86228a9c64' 'https://oidctest.wsweet.org/oauth2/userinfo' | json_pp

JSON response:

{
 "email" : "dwho@badwolf.org",
 "name" : "Doctor Who",
 "preferred_username" : "dwho",
 "sub" : "dwho"
}

Exploitation

	Performances

	Security recommendation

	SELinux

	Status pages

	Check state plugin

	Monitoring

	Logs

	Error messages

	High availability

Performances

LemonLDAP::NG is designed for high performance, both in throughput and
response time. Indeed, it can use Apache2 threads capabilities but
since Apache version 2.4, mpm_worker seems to break mod_perl. So to
increase performances, prefer using Nginx.

Built-in

Cache system

LLNG uses different cache systems to avoid querying to many the
databases:

	

	Lifetime in memory

	
	Lifetime in Local-Cache (file)

	
	DB

	

	Parameter

	Default

	Parameter

	Default

	

	Configuration

	checkTime

	1 second

	
	Until “reload” order

	✔

	Session

	handlerInternalCache

	15 seconds

	default_expires_in 1

	10 minutes

	✔

	1

	Manager >> General parameters >> Sessions >> Sessions storage >> Cache module options

Note

Configuration and sessions are first looked up in-memory, then in
the cache file, and then in their backing store. This means that after a
configuration reload (using Manager), you have to wait for
checkTime before you can see your changes, or wait for configuration
cache expiration in checkTime is disabled.

Global performance

By default, Linux does not use DNS cache and LemonLDAP::NG portal
request DNS for each connexions on LDAP or DB. Under heavy loads, that
can generated hundred of DNS queries and many errors on LDAP connexions
(timed out) from IO::Socket.

To bypass this, you can:

	Use IP in configuration to avoid DNS resolution

	Install a DNS cache like nscd, dnsmasq or unbound

Cron optimization (or systemd timers)

LLNG installs its cron files without knowing how many servers are
installed. You should optimize this to launch:

	purgeCentralCache: only 1 time every 10 minutes for the whole system
(or more)

	purgeLocalCache: ~ 1 time per hour on each server

Handler performance

For Nginx, you can use another auth server instead of
llng-fastcgi-server. See: Advanced PSGI usage.

To increase handler performance, you can disable “Sessions activity
timeout” to prevent it from writing to the session database.

Handlers check rights and calculate headers for each HTTP hit. So to
improve performances, avoid too complex rules by using macros, groups or
local macros.

Local macros

Macros and groups are stored in session database. Local macros is a
special feature of handler that permit one to have macros useable localy
only. Those macros are calculated only at the first usage and stored in
the local session cache (only for this server) and only if the user
access to the related applications. This avoid to have to many datas
stored.

rule
admin -> $admin ||= ($uid eq 'foo' or $uid eq 'bar')
header
Display-Name -> $displayName ||= $givenName." ".$surName

Tip

Note that this feature is interesting only for the
Lemonldap::NG systems protecting a high number of applications

Portal performances

General performances

The portal is the biggest component of Lemonldap::NG. Since version 2.0,
portal runs under FastCGI and has been rewritten using plugins, so
performance is increased in comparison to earlier versions. You just
have to disable unused plugins:

	disable unused issuer modules

	disable notifications if not used

	…

By default it uses local storage to store its tokens. If you have more
than 1 portal and if your load-balancer doesn’t keep state, you have to
disable this to use the global session storage (General parameters »
portal Parameters » Advanced Parameters » Forms). Note that this will
decrease performances.

Tip

In production environment for network performance, prefer
using minified versions of javascript and css libs: use
make install PROD=yes. This is done by default in RPM/DEB
packages.

Apache::Session performances

Lemonldap::NG handlers use a local cache to store sessions (for 10
minutes). So Apache::Session module is not a problem for handlers. But
it can be a bottleneck for the portal:

	When you use the multiple sessions restriction parameters, sessions
are parsed for each authentication unless you use an
Apache::Session::Browseable [https://metacpan.org/module/Apache::Session::Browseable]
module.

	Since MySQL does not have always transaction feature,
Apache::Session::MySQL has been designed to
use MySQL locks. Since MySQL performances are very bad using this, if
you want to store sessions in a MySQL database, prefer one of the
following

Tip

Since 1.9.6, LLNG portal and handler check if session is valid
at each access, so purgeCentralCache cron no longer needs to be launched
every 10 minutes: one or two times per day is enough.

Replace MySQL by Apache::Session::Flex

In “Apache::Session module” field, set
“Apache::Session::Flex <https://metacpan.org/module/Apache::Session::Flex>”
and use the following parameters:

Store -> MySQL
Lock -> Null
Generate -> MD5
Serialize -> Storable
DataSource -> dbi:mysql:sessions;host=...
UserName -> ...
Password -> ...

Tip

Since version 1.90 of Apache::Session, you can use
Apache::Session::MySQL::NoLock instead

Use Apache::Session::Browseable

Apache::Session::Browseable [https://metacpan.org/module/Apache::Session::Browseable]
is a wrapper for other Apache::Session modules that add the capability
to manage indexes. Prefer versions ≥ 1.2.5 for better performances in DB
cleaning. To use it (with PostgreSQL for example), choose
“Apachedoc:Session::Browseable<session::browseable>::Postgres” as
“Apache::Session module” and use the following parameters:

DataSource -> dbi:Pg:database=sessions;host=...
UserName -> user
Password -> password
Index -> ipAddr uid

Note that
Apache::Session::Browseable::MySQL doesn’t
use MySQL locks.

Look at Browseable session backend to
known which index to choose.

Attention

Some Apache::Session module are not fully usable by
Lemonldap::NG such as Apache::Session::Memcached since these
modules do not offer capability to browse sessions. They does not allow
one to use sessions explorer neither manage one-off sessions.

Performance test

Tip

A
Apache::Session::Browseable::Redis [https://metacpan.org/module/Apache::Session::Browseable::Redis]
has been created, it is the fastest (except for session explorer,
defeated by Apache::Session::Browseable:: DBI [https://metacpan.org/module/Apache::Session::Browseable] / LDAP [https://metacpan.org/module/Apache::Session::Browseable::LDAP])

This test isn’t an “only-backend” test but embedded some LLNG methods,
so real differences between engines are mitigate here.

	Backend

	Portal and handlers

	Session explorer and one-off sessions

	Name

	Configuration

	Insert 1000

	Search 1

	Purge 500

	Parse all

	Search by substring

	Search by UID

	Apache::Session::Browseable::LDAP

	mdb

	159.66

	0.0120

	49.22

	0.1110

	0.0076

	0.0050

	Apache::Session::MySQL

	No lock

	87.20

	0.0039

	23.14

	0.0281

	0.0252

	0.0235

	Apache::Session::Browseable::MySQL

	
	91.79

	0.0039

	0.139 2

	0.0272

	0.0036

	0.0026

	Apache::Session::Browseable::MySQLJSON

	
	86.06

	0.0145

	** 0.151** 3

	0.0104

	0.0137

	0.0038

	Apache::Session::Postgres

	
	18.31

	0.0095

	13.40

	0.0323

	0.0277

	0.0264

	Apache::Session::Postgres

	Unlogged table

	9.16

	0.0095

	7.91

	0.0318

	0.0270

	0.0254

	Apache::Session::Browseable::Postgres

	Unlogged table with indexes

	9.24

	0.0094

	0.103 2

	0.0301

	0.0036

	0.0028

	Apache::Session::Browseable::PgJSON

	Unlogged table, json field

	9.25

	0.0091

	0.108 2

	0.0247

	0.0035

	0.0029

	Apache::Session::Browseable::PgJSON

	Unlogged table, jsonb field

	9.25

	0.0091

	0.105 2

	0.0126

	0.0034

	0.0029

	Apache::Session::Browseable::PgHstore

	Unlogged table, hstore field

	9.62

	0.0111

	0.105 2

	0.0125

	0.0033

	0.0029

	Apache::Session::Redis

	
	2.13

	0.0033

	1.158

	0.0623

	0.0570

	0.0550

	Apache::Session::Browseable::Redis

	
	2.36

	0.0033

	1.154

	0.0643

	0.1048

	0.0024

The source of this test is available in sources: e2e-tests/sbperf.pl

	2(1,2,3,4,5)

	“purge” test is done with Apache::Session::Browseable-1.2.5
and LLG-2.0. Earlier results are not so good.

	3

	“purge” test is done with Apache::Session::Browseable-1.2.6
and LLG-2.0.

Analysis:

	LDAP servers are “write-once-read-many”, so write performances are
very bad. Don’t use this on heavy load if “Session activity timeout”
is enabled (if set, handler “write” sessions)

	MySQL/MariaDB is better to read than to write. Prefer PostgreSQL if
you use “Session activity timeout”

	Logged tables decrease a lot insert performances with PostgreSQL, so
use unlogged tables for sessions except for persistent sessions

	Redis is the best for main usage

	Browseable::Postgres/PgHstore/PgJSON are the best SQL solutions on
average

LDAP performances

LDAP server can slow you down when you use LDAP groups retrieval. You
can avoid this by setting “memberOf” fields in your LDAP scheme:

dn: uid=foo,dmdName=people,dc=example,dc=com
...
memberOf: cn=admin,dmdName=groups,dc=example,dc=com
memberOf: cn=su,dmdName=groups,dc=example,dc=com

So instead of using LDAP groups retrieval, you just have to store
“memberOf” field in your exported variables. With OpenLDAP, you can use
the memberof
overlay [http://www.openldap.org/doc/admin24/overlays.html#Reverse%20Group%20Membership%20Maintenance]
to do it automatically.

Attention

Don’t forget to create an index on the field used to
find users (uid by default)

Tip

To avoid storing the full group DNs in session data, you can
use a macro to rewrite memberOf:

	In *Exported variables*, export the memberOf LDAP attribute as a
ldapGroups session variable

	key: ldapGroups

	value: memberOf

	Next, add a ldapGroups macro that will overwrite the exported
attribute

	key: ldapGroups

	value:

join("; ",($ldapGroups =~ /cn=(.*?),/g))

ldapGroups should now contain something like admin; su just like
it would if you had used the regular, slower group resolution mechanism.

You can use
listMatch($ldapGroups, “some_group”) in your
access rules.

NGINX performances

To increase launch by web browser, for example to load js, css, or
fonts, Gzip compression can be activated.

Edit file /etc/nginx/mime.types Check those lines or add :

application/vnd.ms-fontobject eot;
application/x-font-ttf ttf;
application/font-woff woff;
font/opentype ott;

Edit file /etc/nginx/nginx.conf

gzip on; # active la compression Gzip
gzip_disable "msie6";

gzip_vary on;
gzip_proxied any;
gzip_comp_level 6;
gzip_buffers 16 8k;
gzip_http_version 1.1;
gzip_min_length 128;
gzip_types text/plain text/css application/json application/javascript application/x-javascript text/xml application/xml application/rss+xml text/javascript application/vnd.ms-fontobject application/x-font-ttf font/opentype image/jpeg image/png image/svg+xml image/x-icon;

Restart NGINX and watch web-browser console.

Manager performances

Disable unused modules

In lemonldap-ng.ini, set only modules that you will use. By default,
configuration, sessions explorer, notifications explorer and second
factor are enabled. Example:

[manager]
enabledModules = conf, sessions

Enable compactConf parameter

By enabling compactConf option, all unused configuration parameters are
removed. Could be usefull to shrink lemonldap-ng configuration file and
save space.

Go in Manager, General Parameters » Configuration reload »
‘’Compact configuration file ‘’ and set to On.

Use static HTML files

Once Manager is installed, browse enabled modules (configuration,
sessions, notifications) and save the web pages respectively under
manager.html, sessions.html and notifications.html in the
DocumentRoot directory. Then replace this in Manager file of Apache
configuration:

RewriteRule "^/$" "/psgi/manager-server.fcgi" [PT]
DirectoryIndex manager.html
RewriteCond "%{REQUEST_FILENAME}" "!\.html$"
RewriteCond "%{REQUEST_FILENAME}" "!^/(?:static|doc|lib).*"
RewriteRule "^/(.+)$" "/psgi/manager-server.fcgi/$1" [PT]

by:

RewriteRule "^/$" "/psgi/manager-server.fcgi" [PT]
DirectoryIndex manager.html
RewriteCond "%{REQUEST_FILENAME}" "!\.html$"
RewriteCond "%{REQUEST_FILENAME}" "!^/(?:static|doc|lib).*"
RewriteRule "^/(.+)$" "/psgi/manager-server.fcgi/$1" [PT]

So manager HTML templates will be no more generated by Perl but directly
given by the web server.

Security recommendation

Secure configuration access

Configuration can be stored in several formats
(SQL, File,
LDAP) but must be shared over the network if you
use more than 1 server. If some of your servers are not in the same
(secured) network than the database, it is recommended to use
SOAP access for those servers.

Tip

You can use different type of access:
SQL, File or
LDAP for servers in secured network and
SOAP for remote servers.

Next, you have to configure the SOAP access as described
here
since SOAP access is denied by default.

Protect the Manager

By default, the manager is restricted to the user ‘dwho’ (default
backend is Demo). To protect the manager, you have to choose one or both
of :

	protect the manager by Apache configuration

	protect the manager by LL::NG

Protect the Manager by the web server

You can use any of the mechanisms proposed by Apache: SSL, Auth-Basic,
Kerberos,… Example

<VirtualHost *:443>
 ServerName manager.example.com
 # SSL parameters
 ...
 # DocumentRoot
 DocumentRoot /var/lib/lemonldap-ng/manager/
 <Location />
 AuthType Basic
 AuthName "Lemonldap::NG manager"
 AuthUserFile /usr/local/apache/passwd/passwords
 Require user rbowen
 Order allow,deny
 Deny from all
 Allow from 192.168.142.0/24
 Options +ExecCGI
 </Location>
</VirtualHost>

Protect the Manager by LL::NG

To protect the manager by LL::NG, you just have to set this in
lemonldap-ng.ini configuration file (section [manager]):

[manager]
protection = manager

Attention

Before, you have to create the virtual host
manager.your.domain in the manager and set a
rule, else access to the manager will
be denied.

Portal

LLNG portal now embeds the following features:

	CSRF [https://en.wikipedia.org/wiki/Cross-site_request_forgery]
protection (Cross-Site Request Forgery): a token is build for each
form. To disable it, set ‘​require Token for forms’ ​to Off (portal
security parameters in the manager). Token timeout can be defined
via manager (default to 120 seconds)

	Brute-force
attack [https://en.wikipedia.org/wiki/Brute-force_attack]
protection: after some failed logins, user must wait before re-try to
log into Portal

	Content-Security-Policy [https://en.wikipedia.org/wiki/Content_Security_Policy]
header: portal builds dynamically this header. You can modify default
values in the manager (General parameters » Advanced parameters »
Security » Content-Security-Policy)

	Cross-Origin Resource
Sharing [https://en.wikipedia.org/wiki/Cross-origin_resource_sharing]
headers: CORS is a mechanism that allows restricted resources on a
web page to be requested from another domain outside the domain from
which the first resource was served. A web page may freely embed
cross-origin images, stylesheets, scripts, iframes, and videos.
Certain “cross-domain” requests, notably Ajax requests, are forbidden
by default by the same-origin security policy. You can modify default
values in the manager (General parameters » Advanced parameters »
Security » Cross-Origin Resource Sharing)

Attention

	Brute-force attack protection is DISABLED by default

	Browser implementations of formAction directive are inconsistent
(e.g. Firefox doesn’t block the redirects whereas Chrome does).
Administrators may have to modify formAction value with wildcard
likes *.

Split portal when using SOAP/REST

If you use SOAP or
REST session backend, dedicate a portal
especially for these internal requests.

Write good rules

Order your rules

Rules are applied in alphabetical order
(comment and regular expression). The first matching rule is applied.

Attention

The “default” rule is only applied if no other rule
matchs

The Manager let you define comments in rules, to order them:

[image: image0]

For example, if these rules are used without comments:

	Regular expression

	Rule

	Comment

	^/pub/admin/

	$uid eq “root”

	

	^/pub/

	accept

	

Then the second rule will be applied first, so every authenticated user
will access to /pub/admin directory.

Use comment to correct this:

	Regular expression

	Rule

	Comment

	^/pub/admin/

	$uid eq “root”

	1_admin

	^/pub/

	accept

	2_pub

Tip

	Reload the Manager to see the effective order

	Use rule comments to order your rules

Be careful with URL parameters

You can write rules matching any
component of URL to protect including GET parameters, but be careful.

For example with this rule on the access parameter:

	Regular expression

	Rule

	Comment

	^/index.php\?.*access=admin

	$groups =~ /\badmin\b/

	

	default

	accept

	

Then a user that try to access to one of the following will be granted !

	/index.php?access=admin&access=other

	/index.php?Access=admin

You can use the following rules instead:

	Regular expression

	Rule

	Comment

	^/(?i)index.php\?.*access.*access

	deny

	0_bad

	^/(?i)index.php\?.*access=admin

	$groups =~ /\badmin\b/

	1_admin

	default

	accept

	

Tip

(?i) means case no sensitive.

Danger

Remember that rules written on GET parameters must be
tested.

Encoded characters

Some characters are encoded in URLs by the browser (such as space,…).
To avoid problems, LL::NG decode them using
https://metacpan.org/pod/Apache2::URI#unescape_url. So write your rules
using normal characters.

IP in rules

Danger

If you are running LemonLDAP::NG behind a reverse proxy,
make sure you check the
Reverse Proxy how-to so that the rule
applies to the real user IP and not the reverse proxy’s IP. Make sure
you only specify trusted proxy addresses so that an attacker cannot
forge the X-Forwarded-For header

Secure reverse-proxies

LL::NG can protect any Apache hosted application including Apache
reverse-proxy mechanism. Example:

PerlOptions +GlobalRequest
PerlRequire /var/lib/lemonldap-ng/handler/MyHandler.pm
<VirtualHost *:443>
 SSLEngine On
 ... other SSL parameters ...
 PerlInitHandler My::Handler
 ServerName appl1.example.com
 ProxyPass / http://hiddenappl1.example.com/
 ProxyPassReverse / http://hiddenappl1.example.com/
 ProxyPassReverseCookieDomain / http://hiddenappl1.example.com/
</VirtualHost>

See mod_proxy [http://httpd.apache.org/docs/2.2/mod/mod_proxy.html]
and
mod_rewrite [http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html]
documentation for more about configuring Apache reverse-proxies.

Such configuration can have some security problems:

	if a user can access directly to the hidden application, it can
bypass LL::NG protection

	if many hidden applications are on the same private network, if one
is corrupted (by SQL injection, or another attack), the hacker will
be able to access to other applications without using reverse-proxies
so it can bypass LL::NG protection

It is recommended to secure the channel between reverse-proxies and
application to be sure that only request coming from the LL::NG
protected reverse-proxies are allowed. You can use one or a combination
of:

	firewalls (but be careful if more than 1 server is behind the
firewall)

	server based restriction (like Apache “allow/deny” mechanism)

	SSL client certificate for the reverse-proxy (see SSLProxy*
parameters in mod_ssl
documentation [http://httpd.apache.org/docs/2.2/mod/mod_ssl.html])

Configure security settings

Go in Manager, General parameters » Advanced parameters »
Security:

	Username control: Regular expression used to check user login
syntax.

	Avoid browsers to store users password: Enable this option to
prevent browsers from prompting users to save passwords.

	Force authentication: set to ‘On’ to force authentication when
user connects to portal, even if he has a valid session.

	Force authentication interval: time interval (in seconds) when an
authentication renewal cannot be forced, used to prevent to loose the
current authentication during the main process. If you experience
slow network performances, you can increase this value.

	Encryption key: key used to crypt some data, should not be known
by other applications

	Trusted domains: domains on which the user can be redirected
after login on portal.

	Example: myapp.example.com .subdomain.example.com

	* allows redirections to any external domain (DANGEROUS)

	Use Safe jail: set to ‘Off’ to disable Safe jail. Safe module is
used to eval expressions in headers, rules, etc. Disabling it can
lead to security issues.

	Avoid assignment in expressions: Set to ‘Off’ to disable syntax checking.
Equal sign can be replaced by x3D i.e. “dcx3Dorg”

	Check XSS Attacks: Set to ‘Off’ to disable XSS checks. XSS checks
will still be done with warning in logs, but this will not prevent
the process to continue.

	Required token for forms: To prevent CSRF attack, a token is
build for each form. To disable it, set this parameter to ‘Off’ or
set a special rule

	Form timeout: Form token timeout (default to 120 seconds)

	Use global storage: Local cache is used by default for one time
tokens. To use global storage, set it to ‘On’

	CrowdSec Bouncer: set to ‘On’ to enable CrowdSec Bouncer plugin

	Brute-Force Attack protection: set to ‘On’ to enable Brute-force protection plugin

	LWP::UserAgent and SSL options: insert here options to pass to
LWP::UserAgent object (used by SAML or OpenID-Connect to query
partners and AuthSSL or AuthBasic handler to request Portal URL).
Example: verify_hostname => 0, SSL_verify_mode => 0

	Content Security Policy: Portal builds dynamically this header.
You can modify default values. Browser implementations of formAction
directive are inconsistent (e.g. Firefox doesn’t block the redirects
whereas Chrome does). Administrators may have to modify
formAction value with wildcard likes *.

	Cross-Origin Resource Sharing: Portal builds those headers. You
can modify default values. Administrators may have to modify
Access-Control-Allow-Origin value with ‘ ‘.

Attention

If URLs are protected with AuthBasic handler, you have
to disable CSRF token by setting a special rule based on callers IP
address like this :

requireToken => $env->{REMOTE_ADDR} && $env->{REMOTE_ADDR} !~ /^127.0.[1-3].1$/

Danger

Enable global storage for one time tokens will downgrade
Portal performance!!!

Must ONLY be use with outdated or low performance Load Balancer.

Fail2ban

To prevent brute force attack with fail2ban

Edit /etc/fail2ban/jail.conf

[lemonldap-ng]
enabled = true
port = http,https
filter = lemonldap
action = iptables-multiport[name=lemonldap, port="http,https"]
logpath = /var/log/apache*/error*.log
maxretry = 3

and edit /etc/fail2ban/filter.d/lemonldap.conf

Fail2Ban configuration file
#
Author: Adrien Beudin
#
$Revision: 2 $
#

[Definition]

Option: failregex
Notes.: regex to match the password failure messages in the logfile. The
host must be matched by a group named "host". The tag "<HOST>" can
be used for standard IP/hostname matching and is only an alias for
(?f{4,6}:)?(?P<host>[\w\-.^_]+)
Values: TEXT
#
failregex = Lemonldap\:\:NG \: .* was not found in LDAP directory \(<HOST>\)
 Lemonldap\:\:NG \: Bad password for .* \(<HOST>\)

Option: ignoreregex
Notes.: regex to ignore. If this regex matches, the line is ignored.
Values: TEXT
#
ignoreregex =

Restart fail2ban

Sessions identifier

You can change the module used for sessions identifier generation. To
do, add generateModule key in the configured session backend
options.

We recommend to use :
Lemonldap::NG::Common::Apache::Session::Generate::SHA256.

SAML

See
samlservice#security_parameters

SELinux

To make LemonLDAP::NG work with SELinux, you may need to set up some
options.

SELinux policy package

If you are using a RPM distribution and Apache as the web server, you need to
install the lemonldap-ng-selinux package to configure SELinux context correctly

yum install lemonldap-ng-selinux

Note

On CentOS 8 and Fedora, this is done automatically

This package will not configure SELinux booleans, please read the next sections to see which booleans you need to enable manually

Disk cache (sessions an configuration)

You need to set the correct context on the cache directory

Deprecated since version 2.0.10: this is now done by the lemonldap-ng-selinux package

semanage fcontext --add -t httpd_cache_t -f a '/var/cache/lemonldap-ng(/.*)?'
restorecon -R /var/cache/lemonldap-ng/

LDAP

setsebool -P httpd_can_connect_ldap 1

Databases

setsebool -P httpd_can_network_connect_db 1

Memcache

setsebool -P httpd_can_network_memcache 1

Proxy HTTP

setsebool -P httpd_can_network_relay 1

Status pages

Portal Status (experimental)

The Portal displays in JSON format its activity. It can provide a view
of all returned codes.

Configuration

	Ordered List ItemSet portalStatus = 1 in lemonldap-ng.ini file
(section [Portal])

	Note that handler status must also been enabled

	The URL http://portal/status must be protected by your webserver
configuration

Handler Status

Presentation

When status feature is enabled, Handlers and portal will collect
statistics and save them in their local cache. This means that if
several Handlers are deployed, each will manage its own statistics.

Tip

This page can be browsed for example by
MRTG [http://oss.oetiker.ch/mrtg/] using the
MRTG monitoring script.

Statistics are collected through a daemon launched by the Handler. It
can be supervised in system processes.

The statistics are displayed when calling the status path on an Handler
(for example: http://reload.example.com/status).

Example of status page:

[image: image0]

Configuration

Nginx

You need to give access to status path in the Handler Nginx
configuration:

server {
 listen __PORT__;
 server_name reload.__DNSDOMAIN__;
 root /var/www/html;
 ...
 location = /status {
 allow 127.0.0.1;
 deny all;
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:__FASTCGISOCKDIR__/llng-fastcgi.sock;
 fastcgi_param LLTYPE status;
 }
}

Apache

You need to give access to status path in the Handler Apache
configuration:

Uncomment this to activate status module
<Location /status>
 Order deny,allow
 Allow from 127.0.0.0/8
 PerlHeaderParserHandler Lemonldap::NG::Handler->status
</Location>

Then restart Apache.

Tip

You should change the Allow directive to match
administration IP, or use another Apache protection mean.

Portal data

By default Apache handler status process listen to localhost:64321
(UDP). You can change this using LLNGSTATUSLISTEN environment
variable. If you want to collect portal data, you just have to set
LLNGSTATUSHOST environment variable (see comments in our
``portal-apache2.conf``).

<Files *.fcgi>
 SetHandler fcgid-script
 # For Authorization header to be passed, please uncomment one of the following:
 # for Apache >= 2.4.13
 #CGIPassAuth On
 # for Apache < 2.4.13
 #RewriteCond %{HTTP:Authorization} ^(.*)
 #RewriteRule .* - [e=HTTP_AUTHORIZATION:%1]
 Options +ExecCGI
 header unset Lm-Remote-User
</Files>
FcgidInitialEnv LLNGSTATUSHOST 127.0.0.1:64321

LemonLDAP::NG

Edit lemonldap-ng.ini, and activate status in the handler
section:

[all]
Set status to 1 if you want to have the report of activity (used for
example to inform MRTG)
status = 1

Then restart webserver.

Advanced

	You can also open the UDP port with Nginx if you set
LLNGSTATUSLISTEN environment variable (host:port)

	When querying status (using portal or handler status) and if UDP is
used, query is given to LLNGSTATUSHOST (host:port) and response
is waiting on a dynamic UDP port given in query (between 64322 and
64331). By default this dynamic UDP port is opened on loopback
(``localhost`` entry in ``/etc/hosts``). To change this, set an IP
address or a host using LLNGSTATUSCLIENT environment variable.

Check state plugin

This plugin can be used to check if portal instance is ready. This can
be a health check to request keep-alive service to force a fail-over on
the backup-node.

Configuration

To enable Check state:
Go in Manager, General Parameters » Plugins » State Check.
You must also set a shared secret.

Usage

When enabled, /checkstate URL path is handled by this plugin.
GET parameters:

	GET Parameter

	Need

	Value

	secret

	required

	Same value as the shared secret given to the manager

	user

	optional

	If set (with password), a login/logout process will be tried

	password

	optional

	

Example

	Basic availability check:
https://auth.example.com/checkstate?secret=qwerty

	Try to log a user in:
https://auth.example.com/checkstate?secret=qwerty&user=dwho&password=dwho

Monitoring

Handler can be monitored by using MRTG. See
MRTG monitoring.

Portal can also publish its status using REST. To enable it, go to the
manager, general parameters, plugins. Then enable “publish portal
status” option.

Then protect http://auth.yourdomain/portalStatus in webserver
configuration.

This REST URL just publishes a hash containing number of sessions of
each type.

MRTG monitoring

The status page can be read by
MRTG [http://oss.oetiker.ch/mrtg/] using the script lmng-mrtg
that can be found in manager example directory.

MRTG configuration example:

##
Multi Router Traffic Grapher -- Sample Configuration File
##
This file is for use with mrtg-2.5.4c

Global configuration
WorkDir: /var/www/mrtg
WriteExpires: Yes

Title[^]: Traffic Analysis for

128K leased line

#Title[leased]: a 128K leased line
#PageTop[leased]: <H1>Our 128K link to the outside world</H1>
#Target[leased]: 1:public@router.localnet
#MaxBytes[leased]: 16000
Target[test.example.com]: `/etc/mrtg/lmng-mrtg 172.16.1.2 https://test.example.com/status OK OK`
Options[test.example.com]: nopercent, growright, nobanner, perminute
PageTop[test.example.com]: <h1>Requests OK from test.example.com</h1>
MaxBytes[test.example.com]: 1000000
YLegend[test.example.com]: hits/minute
ShortLegend[test.example.com]: hits/mn
LegendO[test.example.com]: Hits:
LegendI[test.example.com]: Hits:
Legend2[test.example.com]: Hits per minute
Legend4[test.example.com]: Hits max per minute
Title[test.example.com]: Hits per minute
WithPeak[test.example.com]: wmy

Logs

Presentation

Main settings:

	REMOTE_USER : session attribute used for logging user access

	REMOTE_CUSTOM : can be used for logging an another user attribute or a macro
(optional)

	Hidden attributes : session attributes never displayed or sent

LemonLDAP::NG provides 5 levels of error and has two kind of logs:

	technical logs

	user actions logs

Each category can be handle by a different logging framework. You can
choose between:

	Lemonldap::NG::Common::Logger::Std: standard output (mapped in
web server logs, see below)

	Lemonldap::NG::Common::Logger::Syslog: syslog logging

	Lemonldap::NG::Common::Logger::Apache2: use Apache2 logging,
levels are stored in Apache2 logs and the log level is defined by
LogLevel Apache parameter

	Lemonldap::NG::Common::Logger::Log4perl: use Log4perl
framework to log (inspired by Java Log4J)

	Lemonldap::NG::Common::Logger::Sentry (experimental): use
Sentry [https://sentry.io] to store logs

	Lemonldap::NG::Common::Logger::Dispatch: dispatch logs in other
backends depending on log level

Attention

Except for Apache2 and Log4Perl, log level is defined
by logLevel parameter set in lemonldap-ng.ini file. Logger
configurations are defined in lemonldap-ng.ini. Example:

[all]
logger = Lemonldap::NG::Common::Logger::Log4perl
userLogger = Lemonldap::NG::Common::Logger::Syslog
logLevel = notice

You can also modify these values in each lemonldap-ng.ini section to
have different values for portal, manager and handlers.

Therefore, LLNG provides a username that can be used by webservers in
their access log. To configure the user identifier to write into access
logs, go into Manager, General Parameters > Logging >
REMOTE_USER.

User log samples

Note

The user name set in user log messages is configured with whatToTrace parameter, except
for messages corresponding to failed authentification, whe the user name logged is the
login used by the user.

Authentication:

[notice] Session granted for dwho by LDAP (81.20.13.21)
[notice] User dwho.com successfully authenticated at level 2
[notice] dwho connected

Failed authentication:

[warn] foo.bar was not found in LDAP directory (81.20.13.21)
[warn] Bad password for dwho (81.20.13.21)

Failed authentication with Combination module:

[warn] All schemes failed for user dwho (81.20.13.21)

Logout:

[notice] User dwho has been disconnected from LDAP (81.20.13.21)

Password change:

[notice] Password changed for dwho (81.20.13.21)

Access to a CAS application non registered in configuration (when CAS server is open):

[notice] User dwho is redirected to https://cas.service.url

Access to a CAS application whose configuration key is app-example:

[notice] User dwho is authorized to access to app-example

Access to an SAML SP whose configuration key is sp-example:

[notice] User dwho is authorized to access to sp-example

Access to an OIDC RP whose configuration key is rp-example:

[notice] User dwho is authorized to access to rp-example

Access to a Get application whose vhost configuration key is host.example.com:

[notice] User dwho is authorized to access to host.example.com

Default loggers

	Apache handlers use by default Apache2 logger. This logger can’t be
used for other LLNG components

	Except when launched by LLNG FastCGI server (used by Nginx), Portal
and Manager use Std logger by default

	All components launched by LLNG FastCGI server use Syslog by default

Log levels

Technical log levels

	error is used for problems that must be reported to administrator
and needs an action. In this case, some feature may not work

	warn is used for problems that doesn’t block LLNG features but
should be solved

	notice is used for actions that must be kept in logs

	info display some technical information

	debug produce a lot a debugging logs

Log levels for user actions

	error is used to log bad user actions that looks malicious

	warn is used to log some errors like “bad password”

	notice is used for actions that must be kept in logs for
accounting (connections, logout)

	info display some useful information like handler authorizations
(at least 1 for each HTTP hit)

	debug isn’t used

Logger configuration

Std logger

Nothing to configure except logLevel.

Apache2 logger

The log level can be set with Apache LogLevel parameter. It can be
configured globally, or inside a virtual host.

See http://httpd.apache.org/docs/current/mod/core.html#loglevel for more
information.

Syslog

You can choose facility in lemonldap-ng.ini file. Default values:

syslogFacility = daemon
userSyslogFacility = auth

You can also override options. Default values:

syslogOptions = cons,pid,ndelay
userSyslogOptions = cons,pid,ndelay

Tip

You can find more information on Syslog options in
Sys::Syslog [https://metacpan.org/pod/Sys::Syslog] Perl
module.

Log4perl

You can indicate the Log4perl configuration file and the classes to use.
Default values:

log4perlConfFile = /etc/log4perl.conf
log4perlLogger = LLNG
log4perlUserLogger = LLNG.user

Sentry

You just have to give your DSN:

sentryDsn = https://...

Attention

This experimental logger requires
Sentry::Raven [https://metacpan.org/pod/Sentry::Raven] Perl
module.

Dispatch

Use it to use more than one logger. Example:

logger = Lemonldap::NG::Common::Logger::Dispatch
userLogger = Lemonldap::NG::Common::Logger::Dispatch
logDispatchError = Lemonldap::NG::Common::Logger::Sentry
logDispatchNotice = Lemonldap::NG::Common::Logger::Syslog
userLogDispatchError = Lemonldap::NG::Common::Logger::Sentry
; Other parameters
syslogFacility = daemon
sentryDsn = https://...

Attention

At least logDispatchError (or
userLogDispatchError for user logs) must be defined. All sub level
will be dispatched on it, until another lever is declared. In the above
example, Sentry collects error and warn levels and all user
actions, while syslog stores technical notice, info and
debug logs.

Error messages

Note

This page do not reference all error messages, but only the
most common

Lemonldap::NG::Common

Warning: key is not defined, set it in the manager !

→ LemonLDAP::NG uses a key to crypt/decrypt some datas. You have to set
its value in Manager. This message is displayed only when you upgrade
from a version older than 1.0

Can't locate /usr/share/lemonldap-ng/configStorage.pl

→ When you upgrade from Debian Lenny with customized index.pl files, you
must upgrade them.

Lemonldap::NG::Handler

Unable to clear local cache

→ Local cache cannot be cleared, check the localStorage and
localStorageOptions or file permissions

Status module can not be loaded without localStorage parameter

→ You tried to activate Status module without localStorage. Configure
local cache first.

No configuration found

→ The configuration cannot be loaded. Check configStorage and
configStorageOptionsor file permissions.

User rejected because VirtualHost XXXX has no configuration

→ The specified virtual host is not configured in Manager.

mkdir /tmp/MyNamespace/2: Permission denied ...

→ The cache has been created by another user than Apache’s user. Restart
Apache to purge it.

Attention

This can append when you use
lmConfigEditor or launch cron files with a different user than
Apache process. That is why it is important to set APACHEUSER variable
when you launch “make install”

Lemonldap::NG::Handler::SharedConf: No cookie found

→ User does not have Lemonldap::NG cookie, handler redirect it to the
portal

The cookie $id isn't yet available: Object does not exist in the data store

→ User session has expired or handler does not have access to the same
Apache::Session database than the portal

Firefox has detected that the server is redirecting the request for this address in a way that will never complete

→ Your browser loops between portal and handler, it is probably a cookie
problem. Verify that:

	the portal is in the declared domain

	CDA is set if the handler is not in the same domain

	portal is in a https virtualhost if securedCookie is set

	you’ve restart all Apache server after having change cookie name or
domain

Lemonldap::NG::Manager

XXXX was not found in tree

→ The specified node is not the uploaded tree.

Lemonldap::NG::Portal

User XXXX was not granted to open session

→ Check grantSessionRule parameter.

XML menu configuration is deprecated. Please use lmMigrateConfFiles2ini to migrate your menu configuration

→ You do not use the new configuration syntax for application list. XML
file is no more accepted.

Apache is not configured to authenticate users !

→ You use the Apache authentication backend, but Apache is not or bad
configured (no REMOTE_USER send to LemonLDAP::NG).

URL contains a non protected host

→ The host is not known by LemonLDAP::NG. Add it to trustedDomains (or
set * in trustedDomains to accept all).

XSS attack detected

→ Some URL parameters contain forbidden characters.

High availability

LemonLDAP::NG is highly scalable, so easy to insert behind a
load-balancer:

	Portal does not store any data outside the session database, so you
can have many portal servers using the same HTTP host name

	All handlers download the whole configuration, so many servers can
serve the same virtual hosts

You can for example set up a fail-over cluster with
Heartbeat [http://www.linux-ha.org/wiki/Heartbeat] and
HAproxy [http://haproxy.1wt.eu/], like this:

[image: image0]

You just have to share configuration and sessions databases between
those servers:

[image: image1]

Development

	How to report a bug

	Contribute to Project

	Handler libraries architecture

	Write a custom plugin

	Custom handlers

How to report a bug

If you don’t know if the problem is a bug, first try to contact us on
lemonldap-ng-users@ow2.org.

Before reporting bug

First, verify that the bug isn’t known; the list is here: Known
Lemonldap::NG
bugs [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues].

Bug reports must provide enough information for developers. So here are
the steps:

	set log level to debug:

	in lemonldap-ng.ini, section [all]

	for Apache users, set also “LogLevel perl:debug” or “LogLevel
debug” in your httpd.conf

	restart the web server

	replay the sequence that fails

Report the bug

	Go to https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues

	Create an account if you don’t have one

	Create the the bug using “New issue” button

	Fill the form:

	don’t forget to set the version you’re using

	explain the sequence that generates the bug

	attach the log file (or part of it if it’s enough)

	Submit the form

 Do you want to contribute to LemonLdap::NG project ?

Contribute to Project

LemonLDAP::NG is mostly written in Perl and Javascript. Community
applies the following rules:

	Perl:

	code must be written in modern object-oriented code (using
Mouse [https://metacpan.org/pod/Mouse]) (except handler and
Apache::Session inheritance)

	code must be formatted using
perltidy [https://metacpan.org/pod/distribution/Perl-Tidy/bin/perltidy]
version 20181120 (from Debian/buster)

	Javascript:

	code must be written in
CoffeeScript [http://coffeescript.org/] (in
<component>/site/coffee): make minify will generate JS
files

Configure SSH

On Debian developper station :

ssh-keygen -o -t rsa -b 4096 -C "your@email"

Go to your gitlab account : https://gitlab.ow2.org/profile/keys

cat ~/.ssh/id_rsa.pub

Copy id_rsa.pub content to key section and enter a name into “Title” and click “Add key” button.
Test ssh connexion :

ssh -T git@gitlab.com

Accept messages

Install basic tools

Debian

As root :

apt install aptitude
aptitude install vim make devscripts yui-compressor git git-gui libjs-uglify coffeescript cpanminus autopkgtest pkg-perl-autopkgtest
aptitude install libauth-yubikey-webclient-perl libnet-smtp-server-perl libtime-fake-perl libtest-output-perl libtest-pod-perl libtest-leaktrace-perl

cpanm Authen::U2F Authen::U2F::Tester Crypt::U2F::Server::Simple

curl -sL https://deb.nodesource.com/setup_9.x | bash -
apt-get install -y nodejs

npm install -g protractor # end-2-end tests
webdriver-manager update # install/update selenium driver

Configure Git

As user :

git config --global user.name "Name Surname"
git config --global user.email "your@mail"
git config --global core.editor vim
git config --global merge.tool vimdiff
git config --global color.ui true
git config --list

Import Project and using Git

As user, create directory in directory:

git clone git@gitlab.ow2.org://user///lemonldap-ng.git
cd lemonldap-ng/
git log
git checkout master # go to master branch
git remote add upstream https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng.git # to connect to remote branch
git fetch upstream # import branch
git checkout v2.0 # to change branch
git fetch upstream

Import version branch on linux station:

git checkout v2.0
git fetch upstream
git rebase upstream/v2.0 # to align to parent project remote branch

On gitlab, create working branch, one per thematic on linux station:

git checkout workingbranch
git log
git status
git commit -am "explanations (#number gitlab ticket)"
git commit --amend file(s) # to modify a commit
git rebase v2.0 # align local working branch to local 2.0
git checkout -- file(s) # revert
git push # to send on remote working branch ! Only after doing some commits !

On gitlab, submit merge request when tests are corrects.

Install dependencies

aptitude install libapache-session-perl libcache-cache-perl libclone-perl libconfig-inifiles-perl libconvert-pem-perl libcrypt-openssl-bignum-perl libcrypt-openssl-rsa-perl libcrypt-openssl-x509-perl libcrypt-rijndael-perl libdbi-perl libdigest-hmac-perl libemail-sender-perl libgd-securityimage-perl libhtml-template-perl libio-string-perl libjson-perl libmime-tools-perl libmouse-perl libnet-ldap-perl libplack-perl libregexp-assemble-perl libregexp-common-perl libsoap-lite-perl libstring-random-perl libtext-unidecode-perl libunicode-string-perl liburi-perl libwww-perl libxml-simple-perl libxml-libxslt-perl libcrypt-urandom-perl libconvert-base32-perl cpanminus
aptitude install apache2 libapache2-mod-fcgid libapache2-mod-perl2 # install Apache
aptitude install nginx nginx-extras # install Nginx
cpanm perltidy@20181120

For SAML:

aptitude install liblasso-perl libglib-perl

Working Project

Configure hosts file

echo '127.0.0.1 auth.example.com manager.example.com test1.example.com test2.example.com' >> /etc/hosts

Unit tests

Launch unit tests:

make test # or manager_test, portal_test, ... to launch unit tests

Same tests launched on a simulated install

make autopkgtest # or autopkg_portal, autopkg_manager, ... to launch unit tests

Execute an unit test :

Building project
cd ~/lemonldap-ng/; make
Go to parent test directory
cd ~/lemonldap-ng/lemonldap-ng-portal
and execute the unit test:
prove -v t/67-CheckUser.t

Launch tests with LDAP backend, for example with OpenLDAP LTB package (https://ltb-project.org/documentation):

make LLNGTESTLDAP=1 LLNGTESTLDAP_SLAPD_BIN=/usr/local/openldap/libexec/slapd LLNGTESTLDAP_SLAPADD_BIN=/usr/local/openldap/sbin/slapadd LLNGTESTLDAP_SCHEMA_DIR=/usr/local/openldap/etc/openldap/schema/ test

Other commands

make start_web_server # TESTUSESSL=1 to enable SSL engine (only available for Apache)
make start_web_server TESTWEBSERVER=nginx # to use Nginx web server
make stop_web_server
make reload_web_server # to reload LL:NG conf
make clean # to clean test files
make minify # to minify and compile coffeescript
make json # to build conf and manager tree
make manifest # to update manifest
make tidy # to magnify perl files (perl best pratices)

Documentation

Install dependencies:

apt install python3-sphinx python3-sphinx-bootstrap-theme

Then edit sources in doc/sources/admin.

You can check the result with:

make documentation
firefox doc/pages/documentation/current/start.html

Handler libraries architecture

Handlers are build on rows of modules:

	Applications or launchers that get the request and choose the right
type (Main, AuthBasic, ZimbraPreAuth,…) and launch it (may not
inherits from other Handler::* modules)

	Wrappers that call “type” library and platform “Main” //(may all
inherits from Platform::Main

	library types if needed (may inherits from Main)

	Main: the main handler library

Overview of Handler packages

	Usage

	Platform

	Wrapper

	Types

	Main

	Apache2 protection

	ApacheMP2

	ApacheMP2::<type>

	Lib::<type>

	Main

	Plack servers protection or Nginx/SSOaaS FastCGI/uWSGI server

	Server

	Server::<type>

	
	

	Self protected applications

	PSGI

	PSGI::<type>

	
	

Types are:

	(Main): link between Main and platform

	AuthBasic

	CDA

	DevOps

	DevOps+ServiceToken

	OAuth2

	SecureToken (not available for PSGI)

	Service Token (server to server)

	ZimbraPreAuth (not
available for PSGI)

Write a custom plugin

Presentation

Standard entry points

You can now write a custom portal plugin that will hook in the
authentication process:

	beforeAuth: method called before authentication process

	betweenAuthAndData: method called after authentication and before
setting “sessionInfo” provisionning

	afterData: method called after “sessionInfo” provisionning

	endAuth: method called when session is validated (after cookie
build)

	authCancel: method called when user click on “cancel” during auth
process

	forAuthUser: method called for already authenticated users

	beforeLogout: method called before logout

Extended entry points

If you need to call a method just after any standard method in
authentication process, then use afterSub, for example:

use constant afterSub => {
 getUser => 'mysub',
};
sub mysub {
 my ($self ,$req) = @_;
 # Do something
 return PE_OK;
}

If you need to call a method instead any standard method in
authentication process, then use aroundSub, for example:

use constant aroundSub => {
 getUser => 'mysub',
};
sub mysub {
 my ($self, $sub, $req) = @_;
 # Do something before
 my $ret = $sub->($req);
 # Do something after
 return $ret;
}

Hooks

New in version 2.0.10.

Your plugin can also register itself to be called at some points of interest
within the main LemonLDAP::NG code.

	Available plugin hooks

Routes

The plugin can also define new routes and call actions on them.

See also Lemonldap::NG::Portal::Main::Plugin man page.

Example

Plugin Perl module

Create for example the MyPlugin module:

vi /usr/share/perl5/Lemonldap/NG/Portal/MyPlugin.pm

Tip

If you do not want to mix files from the distribution with
your own work, put your own code in
/usr/local/lib/site_perl/Lemonldap/NG/Portal/MyPlugin.pm

package Lemonldap::NG::Portal::MyPlugin;

use Mouse;
use Lemonldap::NG::Portal::Main::Constants;
extends 'Lemonldap::NG::Portal::Main::Plugin';

use constant beforeAuth => 'verifyIP';

sub init {
 my ($self) = @_;
 $self->addUnauthRoute(mypath => 'hello', ['GET', 'PUT']);
 $self->addAuthRoute(mypath => 'welcome', ['GET', 'PUT']);
 return 1;
}
sub verifyIP {
 my ($self, $req) = @_;
 return PE_ERROR if($req->address !~ /^10/);
 return PE_OK;
}
sub hello {
 my ($self, $req) = @_;
 ...
 return $self->p->sendJSONresponse($req, { hello => 1 });
}
sub welcome {
 my ($self, $req) = @_;

 my $userid = $req->user;
 $self->p->logger->debug("Call welcome for $userid");

 ...
 return $self->p->sendHtml($req, 'template', params => { WELCOME => 1 });
}
1;

Configuration

Declare the plugin in lemonldap-ng.ini:

vi /etc/lemonldap-ng/lemonldap-ng.ini

[portal]
customPlugins = Lemonldap::NG::Portal::MyPlugin
;customPlugins = Lemonldap::NG::Portal::MyPlugin1, Lemonldap::NG::Portal::MyPlugin2, ...

Since 2.0.7, it can also be configured in Manager, in General Parameters
> Plugins > Custom Plugins.

Available plugin hooks

OpenID Connect Issuer hooks

oidcGotRequest

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG received an authorization request on the /oauth2/authorize endpoint.

The hook’s parameter is a hash containing the authorization request parameters.

Sample code:

use constant hook => {
 oidcGotRequest => 'addScopeToRequest',
};

sub addScopeToRequest {
 my ($self, $req, $oidc_request) = @_;
 $oidc_request->{scope} = $oidc_request->{scope} . " my_hooked_scope";

 return PE_OK;
}

oidcGotClientCredentialsGrant

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG successfully authorized a Client Credentials Grant.

The hook’s parameters are:

	A hash of the current session info

	the configuration key of the relying party which is being identified

Sample code:

use constant hook => {
 oidcGotClientCredentialsGrant => 'addSessionVariable',
};

sub addSessionVariable {
 my ($self, $req, $info, $rp) = @_;
 $info->{is_client_credentials} = 1;

 return PE_OK;
}

oidcGenerateCode

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG is about to generate an Authorization Code for a Relying Party.

The hook’s parameters are:

	A hash of the parameters for the OIDC Authorize request, which you can modify

	the configuration key of the relying party which will receive the token

	A hash of the session keys for the (internal) Authorization Code session

Sample code:

use constant hook => {
 oidcGenerateCode => 'modifyRedirectUri',
};

sub modifyRedirectUri {
 my ($self, $req, $oidc_request, $rp, $code_payload) = @_;
 my $original_uri = $oidc_request->{redirect_uri};
 $oidc_request->{redirect_uri} = "$original_uri?hooked=1";
 return PE_OK;
}

oidcGenerateUserInfoResponse

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG is about to send a UserInfo response to a relying party on the /oauth2/userinfo endpoint.

The hook’s parameter is a hash containing all the claims that are about to be released.

Sample code:

use constant hook => {
 oidcGenerateUserInfoResponse => 'addClaimToUserInfo',
};

sub addClaimToUserInfo {
 my ($self, $req, $userinfo) = @_;
 $userinfo->{"userinfo_hook"} = 1;
 return PE_OK;
}

oidcGenerateIDToken

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG is generating an ID Token.

The hook’s parameters are:

	A hash of the claims to be contained in the ID Token

	the configuration key of the relying party which will receive the token

Sample code:

use constant hook => {
 oidcGenerateIDToken => 'addClaimToIDToken',
};

sub addClaimToIDToken {
 my ($self, $req, $payload, $rp) = @_;
 $payload->{"id_token_hook"} = 1;
 return PE_OK;
}

oidcGenerateAccessToken

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG is generating an JWT-formatted Access Token

The hook’s parameters are:

	A hash of the claims to be contained in the Access Token

	the configuration key of the relying party which will receive the token

Sample code:

use constant hook => {
 oidcGenerateAccessToken => 'addClaimToAccessToken',
};

sub addClaimToAccessToken {
 my ($self, $req, $payload, $rp) = @_;
 $payload->{"access_token_hook"} = 1;
 return PE_OK;
}

oidcResolveScope

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG is resolving scopes.

The hook’s parameters are:

	An array ref of currently granted scopes, which you can modify

	The configuration key of the requested RP

Sample code:

use constant hook => {
 oidcResolveScope => 'addHardcodedScope',
};

sub addHardcodedScope{
 my ($self, $req, $scopeList, $rp) = @_;
 push @{$scopeList}, "myscope";
 return PE_OK;
}

SAML Issuer hooks

samlGotAuthnRequest

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG has received a SAML login request

The hook’s parameter is the Lasso::Login object

Sample code:

use constant hook => {
 samlGotAuthnRequest => 'gotRequest',
};

sub gotRequest {
 my ($self, $res, $login) = @_;

 # Your code here
}

samlBuildAuthnResponse

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG is about to build a response to the SAML login request

The hook’s parameter is the Lasso::Login object

Sample code:

use constant hook => {
 samlBuildAuthnResponse => 'buildResponse',
};

sub buildResponse {
 my ($self, $res, $login) = @_;

 # Your code here
}

samlGotLogoutRequest

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG has received a SAML logout request

The hook’s parameter is the Lasso::Logout object

Sample code:

use constant hook => {
 samlGotLogoutRequest => 'gotLogout',
};

sub gotLogout {
 my ($self, $res, $logout) = @_;

 # Your code here
}

samlGotLogoutResponse

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG has received a SAML logout response

The hook’s parameter is the Lasso::Logout object

Sample code:

use constant hook => {
 samlGotLogoutResponse => 'gotLogoutResponse',
};

sub gotLogoutResponse {
 my ($self, $res, $logout) = @_;

 # Your code here
}

samlBuildLogoutResponse

New in version 2.0.10.

This hook is triggered when LemonLDAP::NG is about to generate a SAML logout response

The hook’s parameter is the Lasso::Logout object

Sample code:

use constant hook => {
 samlBuildLogoutResponse => 'buildLogoutResponse',
};

sub buildLogoutResponse {
 my ($self, $res, $logout) = @_;

 # Your code here
}

CAS Issuer hooks

casGotRequest

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG received an CAS authentication request on the /cas/login endpoint.

The hook’s parameter is a hash containing the CAS request parameters.

Sample code:

use constant hook => {
 casGotRequest => 'filterService'
};

sub filterService {
 my ($self, $req, $cas_request) = @_;
 if ($cas_request->{service} eq "http://auth.sp.com/") {
 return PE_OK;
 }
 else {
 return 999;
 }
}

casGenerateServiceTicket

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG is about to generate a Service Ticket for a CAS application

The hook’s parameters are:

	A hash of the parameters for the CAS request, which you can modify

	the configuration key of the cas application which will receive the ticket

	A hash of the session keys for the (internal) CAS session

Sample code:

use constant hook => {
 'casGenerateServiceTicket' => 'changeRedirectUrl',
};

sub changeRedirectUrl {
 my ($self, $req, $cas_request, $app, $Sinfos) = @_;
 $cas_request->{service} .= "?hooked=1";
 return PE_OK;
}

casGenerateValidateResponse

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG is about to send a CAS response to an application on the /cas/serviceValidate endpoint.

The hook’s parameters are:

	The username (CAS principal)

	A hash of modifiable attributes to be sent

Sample code:

use constant hook => {
 casGenerateValidateResponse => 'addAttributes',
};

sub addAttributes {
 my ($self, $req, $username, $attributes) = @_;
 $attributes->{hooked} = 1;
 return PE_OK;
}

Password change hooks

passwordBeforeChange

New in version 2.0.12.

This hook is triggered when LemonLDAP::NG is about to change or reset a user’s password. Returning an error will cancel the password change operation

The hook’s parameters are:

	The main user identifier

	The new password

	The old password, if relevant

Sample code:

use constant hook => {
 passwordBeforeChange => 'blacklistPassword',
};

sub blacklistPassword {
 my ($self, $req, $user, $password, $old) = @_;
 if ($password eq "12345") {
 $self->logger->error("I've got the same combination on my luggage");
 return PE_PP_INSUFFICIENT_PASSWORD_QUALITY;
 }
 return PE_OK;
}

passwordAfterChange

New in version 2.0.12.

This hook is triggered after LemonLDAP::NG has changed the user’s password successfully in the underlying password database

The hook’s parameters are:

	The main user identifier

	The new password

	The old password, if relevant

Sample code:

use constant hook => {
 passwordAfterChange => 'logPasswordChange',
};

sub logPasswordChange {
 my ($self, $req, $user, $password, $old) = @_;
 $old ||= "";
 $self->userLogger->info("Password changed for $user: $old -> $password")
 return PE_OK;
}

Custom handlers

LLNG provides Perl libraries that can be easily used by inheritance. So
you can write your own handlers but you need first to understand
Handler architecture

Add a new handler type

	Write your new Module (in Lemonldap/NG/Handler/Lib for example) that
overload some Lemonldap::NG::Handler::Main methods

	Write a wrapper in each platform directory (see
Lemonldap::NG::Handler::Apache2::AuthBasic or
Lemonldap::NG::Handler::Server::AuthBasic for examples)

Wrapper usually look at this:

package Lemonldap::NG::Handler::ApacheMP2::MyType;

use base 'Lemonldap::NG::Handler::ApacheMP2::Main', 'Lemonldap::NG::Handler::Lib::MyType';

1;

Enable it

Your wrappers must be named “Lemonldap::NG::Handler::<platform>::<type>”
where <platform> is the target (ApacheMP2 or Server) and <type> is the
name you’ve chosen.

You can enable it either:

	by setting a PerlSetVar VHOSTTYPE <type> in the Apache
configuration file

	by setting a fastcgi_param VHOSTTYPE <type> in the Nginx
configuration file

	by adding it to the menu: add its name in vhostType “select”
declaration (file
lemonldap-ng-manager/lib/Lemonldap/NG/Build/Attributes) and
rebuild LLNG

Note that configuration parameter can be set only in lemonldap-ng.ini
configuration file (section Handler).

Add a new platform

LLNG provides 3 platforms:

	ApacheMP2

	FastCGI server (Nginx is build from there)

	Auto-protected PSGI

If you want to add another, you must write:

	the platform launcher file that launch the required type (see
lemonldap-ng-handler/lib/Lemonldap/NG/Handler/ApacheMP2 file for
example)

	write the main platform file
(Lemonldap::NG::Handler::MyPlatform::Main) that provides required
method (see lemonldap-ng-handler/lib/Lemonldap/NG/Handler/*/Main
for examples) and inherits from Lemonldap::NG::Handler::Main

	write the “type” wrapper files (AuthBasic,…).

Wrapper usually look at this:

package Lemonldap::NG::Handler::MyPlatform::AuthBasic;

use base 'Lemonldap::NG::Handler::MyPlatform::Main', 'Lemonldap::NG::Handler::Lib::AuthBasic';

1;

Old fashion Nginx handlers

Attention

There is no need to use this feature now. It is kept for
compatibility.

Three actions are needed:

	declare your own module in the manager “General Parameters >>
Advanced Parameters >> Custom handlers (Nginx)”. Key is the name that
will be used below and value is the name of the custom package,

	in your Nginx configuration file, add LLTYPE=<name>; in the
location = /lmauth {...} paragraph

	restart FastCGI server(s) (reload is not enough here)

Index

OpenID Connect claims

	Claim name

	Associated scope

	Type

	Example of corresponding LDAP attribute

	sub

	openid

	string

	uid

	name

	profile

	string

	cn

	given_name

	profile

	string

	givenName

	family_name

	profile

	string

	sn

	middle_name

	profile

	string

	

	nickname

	profile

	string

	

	preferred_username

	profile

	string

	displayName

	profile

	profile

	string

	labeledURI

	picture

	profile

	string

	

	website

	profile

	string

	

	email

	email

	string

	mail

	email_verified

	email

	boolean

	

	gender

	profile

	string

	

	birthdate

	profile

	string

	

	zoneinfo

	profile

	string

	

	locale

	profile

	string

	preferredLanguage

	phone_number

	phone

	string

	telephoneNumber

	phone_number_verified

	phone

	boolean

	

	updated_at

	profile

	string

	

	formatted

	address

	string

	registeredAddress

	street_address

	address

	string

	street

	locality

	address

	string

	l

	region

	address

	string

	st

	postal_code

	address

	string

	postalCode

	country

	address

	string

	co

Upgrade from 1.9 to 2.0

Attention

2.0 is a major release, lot of things have been changed.
You must read this document before upgrade.

Upgrade order from 1.9.*

As usual, if you use more than 1 server and don’t want to stop SSO
service AND IF YOU HAVE NO INCOMPATIBILITY MENTIONED IN THIS DOCUMENT,
upgrade must be done in the following order:

	servers with handlers only;

	portal servers (all together if your load balancer is stateless
(user or client IP) and if users use the menu);

	manager server

Attention

You must revalidate your configuration using the
manager.

Installation

Attention

French documentation is no more available. Only English
version of this documentation is maintained now.

This release of LL::NG requires these minimal versions of GNU/Linux
distributions:

	Debian 9 (stretch)

	Ubuntu 16.04 LTS

	CentOS 7

	RHEL 7

For SAML features, we require at least Lasso 2.5 and we recommend Lasso
2.6.

Configuration

	lemonldap-ng.ini requires some new fields in portal section.
Update yours using the one given installed by default. New requires
fields are:

	staticPrefix (manager and portal): the path to static
content

	templateDir (manager and portal): the path to templates
directory

	languages (manager and portal): accepted languages

	Portal skins are now in /usr/share/lemonldap-ng/portal/templates.
See skin customization to
adapt your templates.

	User module in authentication parameters now provides a “Same as
authentication” value. You must revalidate it in the manager since
all special values must be replaced by this (Multi, Choice, Proxy,
Slave, SAML, OpenID,…)*

	“Multi” doesn’t exist anymore: it is replaced by
Combination, a more powerful module.

	Apache and Nginx configurations must be updated to use FastCGI portal

	URLs for mail reset and register pages have changed, you must update
configuration parameters. For example:

mailUrl => 'http://auth.example.com/resetpwd',
registerUrl => 'http://auth.example.com/register',

	Option trustedProxies was removed, you must now configure your
Web Server to manage X-Forwarded-For header, see
how to run LL::NG behind a reverse proxy.

Attention

Apache mod_perl has got lot of troubleshooting problems
since 2.4 version (many segfaults,…), especially when using MPM
worker or MPM event. That’s why LL::NG doesn’t use anymore
ModPerl::Registry: all is now handled by FastCGI (portal and manager),
except for Apache2 Handler.

For Handlers, it is now recommended to migrate to Nginx, but Apache
2.4 is still supported with MPM prefork.

Configuration refresh

Now portal has the same behavior than handlers: it looks to
configuration stored in local cache every 10 minutes. So it has to be
reload like every handler.

Attention

If you want to use reload mechanism on a portal only
host, you must install a handler in Portal host to be able to refresh
local cache. Include handler-nginx.conf or handler-apache2.conf
for example

LDAP connection

Now LDAP connections are kept open to improve performances. To allow
that, LL::NG requires an anonymous access to LDAP RootDSE entry to check
connection.

Kerberos or SSL usage

	A new Kerberos authentication backend has been
added since 2.0. This module solves many Kerberos integration
problems (usage in conjunction with other backends, better error
display,…). However, you can retain the old integration manner
(using Apache authentication module).

	For SSL, a new Ajax option can be
used in the same idea: so SSL can be used in conjunction with other
backends.

Logs

	Syslog: logs are now configured in lemonldap-ng.ini file
only. If you use Syslog, you must reconfigure it. See
logs for more.

	Apache2: Portal doesn’t use anymore Apache2 logger. Logs are
always written to Apache error.log but Apache “LogLevel” parameter
has no more effect on it. Portal is now a FastCGI application and
doesn’t use anymore ModPerl. See logs for more.

	If you are running behind a proxy, make sure LemonLDAP::NG can
see the original IP address
of incoming HTTP connections

Security

LLNG portal now embeds the following features:

	CSRF [https://en.wikipedia.org/wiki/Cross-site_request_forgery]
protection (Cross-Site Request Forgery): a token is build for each
form. To disable it, set requireToken to 0 (portal security
parameters in the manager)

	Content-Security-Policy [https://en.wikipedia.org/wiki/Content_Security_Policy]
header: portal build dynamically this header. You can modify default
values in the manager (Général parameters » Advanced parameters »
Security » Content-Security-Policy)

Handlers

	Apache only:

	Apache handler is now Lemonldap::NG::Handler::ApacheMP2 and
Menu is now Lemonldap::NG::Handler::ApacheMP2::Menu

	because of an Apache behaviour change, PerlHeaderParserHandler
must no more be used with “reload” URLs (replaced by
PerlResponseHandler). Any “reload url” that are inside a
protected vhost must be unprotected in vhost rules (protection
has to be done by web server configuration).

	CDA,
ZimbraPreAuth,
SecureToken and
AuthBasic are now
Handler Types. So there is no
more special file to load: you just have to choose “VirtualHost type”
in the manager/VirtualHosts.

	SSOCookie: Since Firefox 60 and
Chrome 68, “+2d, +5M, 12h and so on…” cookie expiration time
notation is no more supported. CookieExpiration value is a number of
seconds until the cookie expires. A zero or negative number will
expire the cookie immediately.

Rules and headers

	hostname() and remote_ip() are no more provided to avoid some name conflicts replaced by `$ENV{}`)

	$ENV{<cgi_variable>} is now available everywhere: see Writing rules and headers

	some variable names have changed. See Variables document

Opening conditions

	Rule and message fields have been swaped. You have to modifiy and
validate again your access rules.

Supported servers

	Apache-1.3 files are not provided now. You can build them yourself by
looking at Apache-2 configuration files

Ajax requests

Before 2.0, an Ajax query launched after session timeout received a 302
code. Now a 401 HTTP code is returned. WWW-Authenticate header
contains: SSO <portal-URL>

SOAP/REST services

	SOAP server activation is now split in 2 parameters
(configuration/sessions). You must set them else SOAP service will be
disabled

	Notifications are now REST/JSON by default. You can force old format
in the manager. Note that SOAP proxy has changed:
http://portal/notifications now.

	If you use “adminSessions” endpoint with “singleSession*” features,
you must upgrade all portals simultaneously

	SOAP services can be replaced by new REST services

Attention

AuthBasic Handler uses now
REST services instead of SOAP.

CAS

CAS authentication module no more use perl CAS client, but our own code.
You can now define several CAS servers in a specific branch in Manager,
like you can define several SAML or OpenID Connect providers.

CAS issuer module has also been improved, you must modify the
configuration of CAS clients to move them from virtual host branch to
CAS client branch.

Developer corner

APIs

Portal has now many REST features and includes an API plugin. See Portal
manpages to learn how to write auth modules, issuers or other features.

Portal overview

Portal is no more a single CGI object. Since 2.0, It is based on
Plack/PSGI and Mouse modules. Little resume

Portal object
 |
 +-> auth module
 |
 +-> userDB module
 |
 +-> issuer modules
 |
 +-> other plugins (notification,...)

Requests are independent objects based on
Lemonldap::NG::Portal::Main::Request which inherits from
Lemonldap::NG::Common::PSGI::Request which inherits from Plack::Request.
See manpages for more.

Handler

Handler libraries have been totally rewritten. If you’ve made custom
handlers, they must be rewritten, see
customhandlers.

If you used self protected CGI, you also need to rewrite them, see
documentation.

Upgrade from 2.0.x to 2.0.y

Please apply general caution as you would with any software: have
backups and a rollback plan ready!

Known issues

Upgrading from 2.0.0 or 2.0.1 to later versions

If you have installed LemonLDAP::NG from official RPMs, you
may run into bug #1757 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1757] and lose your
Apache configuration files while updating from LemonLDAP::NG 2.0.0 or 2.0.1 to
later versions. Please backup your /etc/httpd/conf.d/z-lemonldap-ng-*.conf
files before the update.

Known regressions in the latest released version

None

2.0.12

Client Credential sessions missing expiration time

If you started using Client Credential grants in 2.0.11, you may have encountered
issue 2481 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2481].

Because of this bug, the created sessions may never be purged by the purgeCentralCache script.

In order to detect these sessions, you can run the following command:

	::
	lemonldap-ng-sessions search –where _session_kind=SSO –select _session_id –select _utime | jq -r ‘. | map(select(._utime == null)) | map(._session_id) | join (“n”)’

This will output a list of SSO sessions with no expiration time.

Review them manually using

lemonldap-ng-sessions get <session_id>

You can then remove them with

lemonldap-ng-sessions delete <session_id> <session_id> <etc.>

Brute-force protection plugin may cause duplicate persistent sessions

Because of bug #2482 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2482] , some users may notice that the persistent session database is filling with duplicate sessions. Some examples include:

	An uppercase version of the regular persistent session (dwho vs DWHO)

	An unqualified version (dwho vs dwho@idp.com)

This bug was fixed in 2.0.12, but administrators are advised to clean up their persistent session database to remove any duplicate persistent sessions remaining after the upgrade.

2.0.11

Portal templates changes

If you created your own skin and modified some template files, you may need to update them.
No change is required if you are using the default bootstrap theme.

A new plugin has been introduced, in beta version: FindUser. It requires a modification of login.tpl to include finduser.tpl.

2.0.10

Security

A vulnerability affecting LemonLDAP::NG installations has been found out when ALL following criteria apply:

	Your handler server uses Nginx

	Your virtual host configuration contains per-URL skip or unprotect access rule

In this situation, you have to update your LUA configuration file like /etc/nginx/nginx-lua-headers.conf. See also issue 2434 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2434].

Other minor security fixes:

	It is now possible to hide sessions identifier in Manager (parameter displaySessionId). See also issue 2350 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2350].

	Second factor management by end user now requires safer conditions. See also issue 2332 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2332], issue 2337 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2337] and issue 2338 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2338].

Main changes

	New dependency: IO::Socket::Timeout

	TOTP check tolerates forward AND backward clock drift (totp2fRange)

	Avoid assignment in expressions option is disabled by default

	RHEL/CentOS SELinux users should install the new lemonldap-ng-selinux package to fix an issue with the new default cache directory [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2401]

	If you use Mattermost Team Edition with OpenID Connect, you need to set the id claim type to Integer

	BruteForceProtection plugin now prevents authentication on backend if an account is locked

	In the Manager API, postLogoutRedirectUri is now returned and consumed as an array [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2347]

	We fixed a bug that caused SAML sessions to be created and never deleted, you should check your session databases for sessions that have "_session_kind": "ISAML" but no _utime. You can safely delete SAML sessions with no _utime during the upgrade.

Portal templates changes

If you created your own skin and modified some template files, you may need to update them, see below if they have been modified.

No change is required if you are using the default bootstrap theme.

2FA manager

In 2fregisters.tpl you need to add the remove2f class to the button that triggers second factor removal:

- <span device='<TMPL_VAR NAME="type">' epoch='<TMPL_VAR NAME="epoch">' class="btn btn-danger" role="button">
+ <span device='<TMPL_VAR NAME="type">' epoch='<TMPL_VAR NAME="epoch">' class="btn btn-danger remove2f" role="button">

Or, better yet, integrate the changes in 2fregisters.tpl and skin.min.js into your custom theme to benefit from the new 2F removal confirmation dialog [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2438]

Checkboxes

A CSS change has been done in styles.css to avoid checkbox labels overflow. See issue 2301 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2301].

The form-check-input class is missing in register.tpl and notifinclude.tpl. See issue 2374 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2374].

Password checker

Input id values have been modified in mail.tpl to work with password checker. See issue 2355 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2355].

Tables caption

Tables captions have been added in sessionArray.tpl. See issue 2356 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2356].

Stay connected

A small change is required in checklogins.tpl for issue 2365 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2365].

Other changes needed in 2fchoice.tpl, ext2check.tpl, totp2fcheck.tpl, u2fcheck.tpl and utotp2fcheck.tpl for issue 2366 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2366].

Mails

The HTML alt attribute has been added on img in all mail_*.tpl. See issue 2422 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2422].

2.0.9

	Bad default value to display OIDC Consents tab has been fixed.
The default value is now: $_oidcConsents && $_oidcConsents =~ /\w+/

	Some user log messages have been modified, check logs documentation
(see also #2244 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2244])

	SAML SOAP calls are now using text/xml instead of application/xml as the MIME Content Type, as required by the SOAP standard [https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383526]

	Incremental lock times values can now be set in BruteForceProtection plugin through Manager.
It MUST be a list of comma separated values. Default values are 5, 15, 60, 300, 600

	This version is not compatible with Mattermost Team Edition

Cookie issues with Chrome

This release fixes several issues related to the change in SameSite cookie
policy for Google Chrome users. The new default value of the SameSite
configuration parameter will set SameSite to Lax unless you are using SAML,
in which case it will be set to None.

This means that from now on, any LemonLDAP::NG installation using SAML must be
served over HTTPS, as SameSite None value requires the Secure flag in cookie.

Change in default cache directory

The default config/session cache directory has been moved from /tmp to
/var/cache/lemonldap-ng in order to avoid issues with cache purges [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2254] when using
Systemd. This change is only applied to new installations. If your
installation is experiencing cache purge issues, you need to manually change
your existing localSessionStorageOptions/cache_root parameter from /tmp
to /var/cache/lemonldap-ng. Be sure to create this directory on your
file system before modifying your configuration.

If you are using SELinux, you also need to run the following commands

semanage fcontext --add -t httpd_cache_t -f a '/var/cache/lemonldap-ng(/.*)?'
restorecon -R /var/cache/lemonldap-ng/

Required changes in NGINX handler rules (CVE-2020-24660)

We discovered a vulnerability that affects LemonLDAP::NG installations when ALL of the following criteria apply:

	You are using the LemonLDAP::NG Handler to protect applications

	Your handler server uses Nginx

	Your virtual host configuration contains per-URL access rules based on
regular expressions in addition to the built-in default access rule.

Note

You are safe from this vulnerability if your virtualhost only uses a regexp-based rule to trigger logout

If you are in this situation, you need to modify all your handler-protected
virtualhosts by making the following change:

	Replace fastcgi_param X_ORIGINAL_URI $request_uri by fastcgi_param X_ORIGINAL_URI $original_uri if you are using FastCGI

	Replace uwsgi_param X_ORIGINAL_URI $request_uri by uwsgi_param X_ORIGINAL_URI $original_uri if you are using uWSGI

	Right after auth_request /lmauth;, add the following line

set $original_uri uriis_args$args;

You can check the Manage virtual hosts page for more information

LDAP certificate validation (CVE-2020-16093)

LDAP server certificates were previously not verified by default when using secure transports (LDAPS or TLS), see CVE-2020-16093 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/-/issues/2250]. Starting from this release, certificate validation is now enabled by default, including on existing installations.

If you have configured your CA certificates incorrectly, LemonLDAP::NG will now start complaining about invalid certificates. You may temporarily disable it again with the following command

/your/path/to/lemonldap-ng-cli set ldapVerify none

If you use LDAP as a configuration storage, and want to temporarily disable certificate validation, you must make the following addition to /etc/lemonldap-ng/lemonldap-ng.ini

[configuration]
...
ldapVerify = none

If you use LDAP as a session backend, you are strongly encouraged to also upgrade corresponding Apache::Session modules (Apache::Session::LDAP or Apache::Session::Browseable). After this upgrade, if you want to temporarily disable certificate validation, you can add the following parameter to the list of Apache::Session module options:

	key: ldapVerify

	value: none

Please note that it is HIGHLY recommended to set certificate validation to require when contacting LDAP servers over a secure transport to avoid man-in-the-middle attacks.

2.0.8

	New dependency: Perl module Time::Fake is now required to run unit
test and build packages, but should not be mandatory to run the
software.

	Nginx configuration: some changes are required to allow IPv6, see
#2152 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2152]

	Option singleSessionUserByIP was removed, see
#2159 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2159]

	A memory leak was found in perl-fcgi with Perl < 5.18, a workaround
is possible with Apache and llng-fastcgi-server, see
#1314 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1314]

	With Apache: set FcgidMaxRequestsPerProcess 500 in portal
virtual host

	With llng-fastcgi-server: set PM_MAX_REQUESTS=500 in
llng-fastcgi-server service configuration

	Cookie SameSite value: to avoid problems with recent browsers,
SAML POST binding, LLNG cookies are now tagged as
“SameSite=None”. You can change this value using manager,
“SameSite=Lax” is best for installations without federations.
Important note: if you’re using an unsecured connection (http://
instead of https://), “SameSite=None” will be ignored by browsers
and users that already have a valid session might be prompted to
login again.

	OAuth2.0 Handler: a VHost protected by the OAuth2.0 handler will now
return a 401 when called without an Access Token, instead of
redirecting to the portal, as specified by
RFC6750 [https://tools.ietf.org/html/rfc6750]

	If you encounter the following issue:

AH01630: client denied by server configuration: /usr/share/lemonldap-ng/manager/api/api.fcgi

when trying to access the portal. It probably comes from incorrect
Apache configuration. Remove the (optional and disabled by default)
manager API config:

rm /etc/httpd/conf.d/z-lemonldap-ng-api.conf && systemctl reload httpd

2.0.7

	Security:

	#2040 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/2040]:
Configuration of a redirection URI for an OpenID Connect Relying
Party is now mandatory, as defined in the specifications. If you
save your configuration, you will have an error if some of your RP
don’t have a redirect URI configured.

	#1943 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1943]
/
CVE-2019-19791 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19791]:
along with the patch provided in 2.0.7 in
Lemonldap/NG/Common/PSGI/Request.pm, Apache rewrite rule must
be updated to avoid an unprotected access to REST services:

portal-apache2.conf

RewriteCond "%{REQUEST_URI}" "!^/(?:(?:static|javascript|favicon).*|.*\.fcgi(?:/.*)?)$"
RewriteRule "^/(.+)$" "/index.fcgi/$1" [PT]

manager-apache2.conf

RewriteCond "%{REQUEST_URI}" "!^/(?:static|doc|lib|javascript|favicon).*"
RewriteRule "^/(.+)$" "/manager.fcgi/$1" [PT]

	Other:

	Option checkTime was enabled by default in
lemonldap-ng.ini, this let the portal check the configuration
immediately instead of waiting for configuration cache expiration.
You can keep this option enabled unless you need strong
performances.

	Removed parameters:

	samlIdPResolveCookie

2.0.6

	Option was added to display generate password box in
password reset by mail plugin. If you use this
feature, you must enable this option, which is disabled by default.

	If you use the default _whatToTrace macro and a case insensitive
authentication backend, then a user can generate several persistent
sessions for the same login (see issue
1869 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1869]).
This can lead to a security bug if you enabled 2FA, which rely on
data stored in the persistent session. To fix this, either choose a
unique attribute for _whatToTrace, either force lower case in your
macro:

$_auth eq 'SAML' ? lc($_user.'@'.$_idpConfKey) : $_auth eq 'OpenIDConnect' ? lc($_user.'@'.$_oidc_OP) : lc($_user)

	On CentOS 7 / RHEL 7, a system upgrade breaks ImageMagick, which is
used to display captchas (see
#1951 [https://gitlab.ow2.org/lemonldap-ng/lemonldap-ng/issues/1951]).
To fix this, you can run the following commands:

yum install -y urw-base35-fonts-legacy
sed 's,/usr/share/fonts/default/Type1/,/usr/share/X11/fonts/urw-fonts/,g' -i /etc/ImageMagick/type-ghostscript.xml

2.0.5

	The Text::Unidecode perl module becomes a requirement (it will be
automatically installed if you upgrade from from the deb or RPM
repositories)

	CAS logout starts validating the service= parameter, but only if you
use the CAS Access control policy. The URL sent in the service=
parameter will be checked against
known CAS applications,
Virtual Hosts, and
trusted domains. Add
your target domain to trusted domains if you suddenly start having
“Invalid URL” messages on logout

	Improvements in cryptographic functions: to take advantage of them,
you must change the encryption key of LemonLDAP::NG (see
CLI example).

	Debian packaging: FastCGI / uWsgi servers require llng-lmlog.conf and
llng-lua-headers.conf. Those configuration files are now provided by
lemonldap-ng-handler package and installed in /etc/nginx/snippets
directory.

 nav.xhtml

 Table of Contents

 		
 Documentation for LemonLDAP::NG 2.0

 		
 Documentation index

 		
 Presentation

 		
 Workshops

 		
 Installation and configuration

 		
 Packaged versions

 		
 Bug report

 		
 Development

 		
 Other

_images/manager-exported-variables.png
Exported variables

Keys Values
[« | [« |e
[t | (o K

‘ uid ‘ ‘ uid

‘00

_images/manager-choice.png
Authentication chain

Name

Authentication module

Users module

Password module

URL

2_LDAP

LDAP

LDAP

LDAP

_images/manager-form-replay.png
Form replay

Form URL

fform.html

Form target URL (optional)

findex.pl

iQuery URL (optional)

default

iQuery form selector (optional)

iQuery button selector (optional)

X

_images/manager-form-replay-vars.png
Form replay

Form URL

Form target URL (optional)

iQuery URL (optional)

iQuery form selector (optional)

iQuery button selector (optional)
Variables to post

postuid

postmail

poststatic

fform.html

findex.pl

default

Suid

$mail

"static”

_images/manager-portal-menu-application.png
Application

Description

URI

Tooltip

Logo

Display
application

Application Test 1

A simple application displaying authenticated user

hitp:test1. example.com/

A nice application!

(S|

Enabled

demo.png

Disabled

© Automatic

‘Special rule

_images/manager-notification.png
Create

——
Date [20100725 &
Reteence |
Condon |
Alowed marups:
50 P
Content .
N . <titie>...<Hitie>
- P —
+ e <ot

+ <checko...<lcheck>

_images/manager-rule.png
Rule

Comment

Regular
expression

Rule

Required
authentication
level

Alogout

logout_sso

_images/manager-portal-menu-icon.png
Choose logo

0
Y

=

A)
& @

(elits 2

|
H &

_images/manager-saml-metadata.png
Metadata

Edit content :

Replace by file :
Parcourir.... | Aucun fichier sélectionné.

Load from URL :

Load

_images/manager-saml-attributes.png
Exported attributes

Key name

on

uid

Name

on

uid

Friendly name

Mandatory

Jon @ off

@O0n (00

Format

_images/logo_office_365.png
] Office 365

_images/liferay_logo.png

_images/lists.png

_images/limesurvey_logo.png

_images/logo-ansibletower.png
ANSIBLE
TOWER

by Red Hat"

_images/llng_deps.png
LemonLDAP::NG dependency graph

A pp/Server

Web Server

ﬁ——

_images/logo-jitsimeet.png
& Jitsi Meet

_images/logo-awx.png

_images/logo_amazon_web_services.jpg
amazon

wel

_images/logo-publik.png
publik silii

_images/liferay_7.png
¢v-C0OQ

& onmosamn

_images/liferay_6.png
® © Settinga - Lifaray - Mozllia Fireban
Do G et teeranes G At

9% 7€ 0D eyttt Tt sty %,

D
| = I
ey R, e
e = T

P ——

_images/nextcloud_certificate_keys.png
> General Parameters

> Variables

| > Virtual Hosts

v SAML2Service

|/ Entity Identifier

‘ ~ Security parameters.

~ # signature

A #sae Browse~ @ Hide help

OnNewkeys B Download

Signature
Private key Public key
—BEGIN RSA PRIVATE KEY-— ——BEGIN PUBLIC KEY—

~ # Encryption

‘ 4 Use certificate in responses

| chosssezunfieier | Aueunfeer o

_images/nextcloud-logo.png
Qo

Nextcloud

_images/nextcloud_saml_configuration.png
Server settings

Server info

Sharing

External storages

Theming

Encryption

Workflow

SAML authentication

Usage report

Logging

Additional settings

Tips &tricks

SAML

General
uid
@ Only allow authentication if an account is existent on some other backend. (e.g. LDAP)

Service Provider Data

I your Service Provider should use certificates you can optionally specify them here.

Identity Provider Data

Configure your IdP settings here.

——BEGIN CERTIFICATE—
MIIDODCCAIACCQDI0ZPyaanEcTANBgkahkiGIWOBAQSFADBEMQSWCQYDVQQGEWG

Security settings
For increased security we recommend enabling the following settings if supported by your environment. Show security settings

Download metadata XML

_images/nextcloud_saml_activation.png
v General Parameters

>

> Authentication parameters

v

Portal

Issuer modules

v SAML

Activation

Path

A Asae

SAML

Activation

Path

Use rule

£ Browse ~

@ Hide help
®on O off
samil
®on O off

‘Special rule

_images/nextcloud_service_metadata.png
G I Paramets
? General Parameters A #sae BBowse~ @Hidehelp X Cancel B Download

> Variables

> Virtual Hosts Metadata

> SAML2Service Edit content :

< version="1.0"2>
> SAML identity providers ‘<md EntiyDescriptor xmins md="um oasis names tc:SAML-2 0 metadte’

ValidUnti="2016-09.01T14:53272"

cacheDuration="PT6048005'
v SAML service providers eniity|D="iemmmm findex phplappsluser_samisamiimetadata’>

<md:SPSSODescrptor AutnRequestsSigned=Talse” WantAssertons Signed="fale" protocolSupportEnumeraton="uroasis:names1c:SAML2.0-protocol">
<md:SingleLogoutService Binding="umoasis names tc:SAML-2 0 bindings HTTP.Redirect” Location="fress== nindex phplappsiuser_samlsamilsis'>
v NextCloud <md:NamelDFormat>um-oasis names1c:SAML1. Lnameid-format unspeciied/md:NamelDFormat>

4 Metadata Replace by file :
> Exported attributes Aucun fichier choisi
> options Load from URL :

> OpenID Connect Service

_images/nextcloud_service_exportedattributes.png
General Parameters
Variables
Virtual Hosts
SAML 2 Service
SAML identity providers.
SAML service providers
v NextCloud
Metadata
> Exported attributes

> Options

A #sae BBowse v @ Hide help

Exported attributes
Key name Name

uid uid
Exported attributes

Exported attributes

Key name Name

cn cn

© Add attribute

Friendly name

Friendly name

Mandatory

® on

Mandatory

On @ off

Format

Format

X}

_images/oauth2_handler.png
OAuth2 Handler

FAs Front Application OpenlD Connect server OAuth2 Handler

>
1
I

1 First access

2 Redirect to OIDC server

e 12 Display result
|

T
| I | I
| I | I
r I | I
| I | I
> I | I
I I | |
| 3 Authentication | I I
T T > | I
\
L 4 Redirect to Front Application with ID Token and Access Token J : :
I i I | I
|5 Forward ID Token and Access Token H‘ } : :
r
I | | | |
| L 6 Send Access Token in Authorization Header >| I
| | I | I
| ! I | 7 Check Access Token and get user session |
| | I — I
| 1 | [— I
} } } |__8 Apply access control and fill headers :
i i | — i
| | I l I
} ! ! | send request with filled HTTP headers |
T
| | I | I
| | | e 10 Send response |
| | I I |
| | 11 Send response] |
| I 1 I
| | | I
J | I
| | I
| | I
| 1 I

_images/oauth-retina-preview.jpg

_images/personal.png

_images/obm_logo.png

_images/manager-saml-signature.png
Signature

Private key

BEGIN RSA PRIVATE KEY-
MIIEDAIBAAKCAQEAOWO 1wU4cIXDIaHTZWMENKIXCCraC:eXBarZ6voOAM 7D
VICQNNGis2EWweyueGYANOL69ZSNIEKHS XSCONLAKECRILEOUXEDegi UGG
‘258YLHINCyMQ221XuWNXCPWOVeHIM/TYKGR +RG4PDF2XCRWLBoBUTb20Pa0
De2NYWaiGHSEJPu94DCELRIZGESPE0C00ag0GUCKO0Y- VX1 EaPUSGE
AEEMDBOM7RB1piRIQMCHY2RCut4eWX/RTOYBCARqMoW OBS3TPEWNgioT
QokNUALK2yNEIyVEToqy20gSVI38AYDIpwIDAQABAOIBABL GTAKKPrerpa2
GBICZTY/coYgQyiSmSIUWN 7B HAZDjaEabczVSDb8HRESODEWIQKeME44.
NDB2nCeDIQV3ZI5SKKASPEIdHYC 3wszaHEZou THIRSMSVNZZFdOAK120dy0-

Replace by file
| Parcourir... | Aucun fichier sélectionns.

Private key password

Public key

BEGIN CERTIFICATE.
MIIDBICCAE4CCQDKIrHSWINGVANBgHGHKIGIWOBAQSFADBF MOSWCQYDVOQGEWS
VTETMBEGATUECAWKUZS1ZS 1 TAGFOZTERMBBGAT UECQWYSWS0ZXAZXQGV2KZ20
©/BQUHKGTHRIMB4XDTE2MDEXMTEWMjocOFoXDTIZMDEWODEWMKOFowRTELMAKG
ATUEBANCQVUXEZARBINVBAGMC INVOWUIU3RNIGUXITAIBGNVBAOMGERIGYYomVO
IFa52GapdHMgUHRSIEX)ZDCCASIWDQYKoZINeNAEBBOADGGEPADCCAGOCOgES
ANMNNCF OHJZVSHZNO2VIAYrySV3AD2AMV=qa2erDg uwd 2mL QN XITNN st
MAFIC W TZORCh+VOgDS +JPAKSS W1 +sg3olaybhsL 92uGOTYQSKHr
VTIVWITKKTYY 1 X0 TPOBIKkXe D1 SEcCWalwVEZE2Z2IASWF4qorpi0y

Replace by file

| Parcourir... | Aucun fichier sélectionns.

_images/mattermost_logo.png
(@ Mattermost.

_images/manager-skin-background.png
Skin background

Anse

_images/mediawiki_logo.png
[249]

MediaWiki

_images/maybe.png

_images/mobilizon_logo.jpg

_images/microsoft-adfs.png
o Microsoft

Active Directory
Federation Services

_images/neotux.png

_images/my_domain_salesforce-resize-web.png
'+ Deskip wegraton e conan e e

App Setup

iy
 Deveop
 Depy

LR Y P——

e Wy bomain setings

i pckges
Juree— T L —

et upomes et Py Poge eqass it or s e i 1, 5O BT s 1 s e,
Reirciao e same uge i o doman

Admiistrtion Setup o sameis o
 Manage users

 Manage Apps

J——

 Conpanyprome
* SecuryCanros

P — .

Comumis [——
[r—————
+ Commicaon Tompaes e
P — =
eniorg =]

Login Page settings -

_images/new.png

_images/googleapps-menu.png
Dashbo:

Advanced tools

Useraccounts Dom:

seftings Advanced tools Service seftings

_images/google_logo.png

_images/googleapps-ssoconfig.png
Dashboard Useraccounts Dor
«Back to Advanced tooks

settings | Adv:

tools Service settings~

Set up single sign-on (SS0)
o s6tup S50, please provid th nformatn bekow. SSO Reference

 Enabl Single Sign-on

Sign-in page URL
itp: /dev2.andreas.feide.no/ simplesami sami2 idp/SSOService. | URL for signing i to your system and Google Apps

‘Sign-out page URL *
hitp:/ /dev2.andreas.feide.no/ simplesam/ sami2/idp/ LogoutServ] URL to redrect users to when they sign out

Change password URL *
itp:/ /devz.andreas feide.no URL to lt users change theirpassword in your system

Verification cortficate -
Acertficate e has boen uploaded - Repiace cerificate

“The crtficate fle must contain the puble key for Google o verly sign-in requests. Learn more

Network masks.
158.38.0.0/1

Network masks determine which addresses wil be affected by single sign-on. f o masks are specifed, SSO functinalty wil be appied
tothe entire network.

Use a semicolon to Separate the masks. Example: (64.233.187.99/8; 72.14.0.0/16)

For ranges, use a dash. Example: (64.233.167-204.96132)

Allnetwork masks must end wih a CIDR. Learn more

_images/googleapps-sso.png
Single sign-on Set up single sign-on (SSO)
'SAML-based Singlo Sign-On (SSO) service allows you 1o authenticate user accounts for web basod applcations,
(ke Gmalor Calendar). For deskiop appications (1ko Google Talk or POP access to Gmall, your usors must
continue to sign i directly with their Google Apps username and password. Learn more

_images/gpg.png

_images/googleapps_logo.png

_images/fusiondirectory-logo.jpg
19 [USION
DIRECTORY

_images/franceconnect_logo.png

_images/gitlab_logo.png

_images/gerrit_logo.png
++

_images/glpi_logo.png
2LPI

_images/devops.png
0 o
e

S50 Admins

LLNG Handler
(FasiCGl)

LLNG Portal

‘Access with cookie

Web server

‘Application code

_static/file.png

_images/django_logo.png
django

_static/plus.png

_images/discourse.jpg
Discourse

_static/minus.png

_images/drupal_logo.png

_images/dokuwiki_logo.png
(oW,

_images/clean.png

_images/xeyes.png

_images/bugzilla_logo.png

_images/wordpress_logo.png

_images/configuration-ldap.png
aaaaaaa

_images/zimbra_logo.png
5Zimbra

_images/colors.png

_images/xwiki.png

_images/deprecated.png

_images/csod_logo.png
Cornerstone

_images/lemonldap-ng-password-expired.png
sd PASSWORD EXPIRED

Admin User

1: Bind

1.1: Check
B 1.2: Password expired

3: Reinitialize password

]
|
i
i
i
|
|
i
3.1: pwdReset=TRUE
3.2: Password Reinitialized

4: Transmit temporary password

2: Contact Administrator

5: Bind with temporary password

i
|
i
i
|
i
i
i
5.1: Check
B 5.2: User must change password

6: Change password

6.1: Change password
6.2: Password changed
oo

_images/lemonldap-ng-password-expiration-warning.png
sd PASSWORD SOON EXPIRED

A [toa?]

Admin User

1: Bind

1.1: pwdExpireWarning < pwdMaxAge

1.2: Warning: password will expire soon

2: Change password

2.1: Change password

2.2: Password changed

[User doesn't change password]

_images/liferay_1.png
FALIFERAY

Welcome to Litray

Sample Website
built'in Liferay

_images/lemonldapng-sso.png
B (o (o (s [s (o

User Portal User data
(web browser) Handler Web Application Sessions

(authentication point)

(LDAP, database,

_images/liferay_3.png
Samp!
buitt

_images/liferay_2.png
@ - Welcome - Liferay - Mozilla Firatax
B G W e teerones G Ao
P Ty e

_images/liferay_5.png
® © Settinga - Lifaray - Mozllia Fireban
Do G et teeranes G At e
@9 © 0 0 D "irermcinsosnyaoolpesimisi o Wi im0

-

e [— B

e T

_images/liferay_4.png
8 © Bnume Adenks - My Amment - Ly - Hachia Frade. €8 8
B

G0 QO G rires s i e s o+ G <
— iiii—

AT

e

L

T S —

_images/lemonldap-ng-architecture.png
i

Users

\
&ﬁ%..« w
e
R/

_images/lasso.png

_images/lemonldap-ng-docker.png

_images/ha-sessions-configuration.png
Sessions

)

Configuration

<«
+— =

Configuration

_images/humhub_logo.png
c'HumHub

_images/http_logo.png

_images/jabber_protocol.png

_images/iparapheur_logo.png
4 parapheur

_images/kthememgr.png

_images/kmultiple.png

_images/grr_logo.png

_images/grafana_logo.png

_images/ha-apache.png
fo

User
1web browser)

_images/guacamole.png
9

)

_images/screenshot_grr_configuration.png
Consideration of a HTTP authentification ¢
In case you want to identify your users and visitors through an HTTP authentication method, enable this function for GRR below. Please report to the documentation in case you need further details.

Activaf

n and status by default of imported users

Enable the HTTP authentication method, and choose under which session default users will be authentificated as upon their first log in. You will then be able to change their status for each user accordingly, if necessary.
Visitor
@ user

Dans le cas dune authentification HTTP, il est possible de tenter de récupérer les noms, prénoms et adresses email des utilisateurs grace aux informations contenues dans le tableau $_SERVER et transmises par le systeme
dauthentification.

Par exemple, si _SERVER]['sn"] contient le nom de I'utlisateur, indiquer “sni" dans le premier champ ci-dessous. De méme indiquez "givenName" dans la deuxiéme ligne si $_SERVER{"givenName'] contient le prénom et indiquez "mail"
dans la troisieme figne si §_SERVER['mail’] contient le mail

Name: HTTP_AUTH_SN
First name: | HTTP_AUTH_GIVENNAME

Email: HTTP_AUTH_MAIL

_images/server_to_server.png
User Handler WebApp1 Handler

GET/HTTPILY
Host : Webapp1.sso
Cookle : Lemon=ABC.

GET/HTTPILY

Host : Webapp2.sso
token : ZYX

GET/HTTPI1Y
Host : Webapp2mydomain
Header! - xxx

_images/screenshot_limesurvey_configuration.png
Strip domain part (OMAIN\USER o
USER@DOMAIN)

Key to use for usemame e.g.
PHP_AUTH_USER, LOGON_USER,
REMOTE_USER. See phpinfo in global
settings.

Checkto make default authentication
method (This disable Default LimeSurvey
authentification by database)

HTTP_AUTH_USER

BN 2 Envegistrer et fermer | IS

_images/remote-principle.png
Session database 1

Appli.

Session database 2

direct access
or using SOAP

Secondary portal Appli.

4

284/

_images/remote-interoperability.png
Organization 1 Organization 2

51 »
~Ts
Remote Remote
type portal type portal
Main porta \ | Main porta

284

& || @®

_images/roundcube_logo.png
9

roundcube

_images/reverseproxy.png
Internet

Ueerip

Load balanacer

WAF
Prowy P SSL termination

|

Other app LemonLDAP:NG Portal LemonLDAP::NG Manager

_images/saml-awx.png
AUTHENTICATION

AZUREAD GITHUB. GOOGLE OAUTH2

SAML ASSERTION CONSUMER SERVICE (ACS) URL @

https://awx .com/sso/complete/saml/

* SAML SERVICE PROVIDER PUBLIC CERTIFICATE @

-BEGIN CERTIFICATE-

* SAML SERVICE PROVIDER ORGANIZATION INFO @

1{
2 “en-Us’

{
"displayname”: "AWX Worteks",

3
4 "url": "https://awx.
5 "name": “awxworteks"
6

* SAML SERVICE PROVIDER TECHNICAL CONTACT @
1{
2 “emailAddress
3 "givenName"

4}

'Support Wor tek

* SAML SERVICE PROVIDER SUPPORT CONTACT @
1{

2 “emailAddress": "
3 "givenName": "Support Worteks"

4}

SAML ENABLED IDENTITY PROVIDERS @
1{

2 "lemonldap": {
3 "attr_last_name": "sn",

4 "xsegcert":

5 "attr_username": "uid",

6 "entity id": "https://auth.

LDAP RADIUS

con",

_com/saml/metadat:

TACACS+

REVERT

SAML SERVICE PROVIDER METADATA URL @

https://awx .com/sso/metadata/saml/

* SAML SERVICE PROVIDER PRIVATE KEY @

$encrypteds

REVERT

SAML SERVICE PROVIDER ENTITY ID @

awx .com

A8 6 & O

REVERT

REVERT

REVERT

REVERT

REVERT

i

_images/salesforce-logo.jpg

_images/screenshot_dokuwiki_configuration.png
Authentication

e
Use access control lsts o ®
p—
Autogenerate passwords L]
asype
Authentication backend © authlemonidap ~|
—
Password encryption method smds
g
Default group, all new users will be placed in this group juser
superr
Superuser - group, user or comma separated list © | (@admin, @wiki_admins

userL, @groupl,user2 with full access to all pages and
functions regardiess of the ACL settings.

_images/saml_sso_settings-resize-web.png
Soarch Al Setp.. O Q SAML Single Sign-On Setting [e———
o] et B0 S 500548003

‘Salesfored Setup et

‘SAML Single Sign-On Seting Detail G D o Do e 54V Ao i
Force.com Home ane e mdoman
s wion 20 [re—————

‘System Overview o gt mpdoman comsimeaists Enty g b 507 saesoca com
personal setup T Evaon b o vt 527526U1

. Saneg ot SaspegCen JaDecznle 18312
SO Atz Asemon s
@ gt Sty T Fcorton 0
 Desbap vigran St oy Lo St

oty P Logi UL gt doma. o ainsionon

P ety o Loges .
s v rted HTTPPOST
o crene et
@ oo St Logn R, g Siin-S50.57 ysaksoe oo
© vepiy A 20 T i Ryt 0.5 e oL ek S S bs
- (| i Cone oo i | A, oo i
tedPaages
AopEscangs asaice
Crnca s

 Mamage sers
© Masage Apwe.

_images/portal-notification.png
This is your first
access on this
system

Be a nice user and don't break it please

Of course | am not evill

_images/phpldapadmin_logo.png
“2fpap

Eaumin

_images/warehause.png

_images/bad.png

_images/awx-saml-login.png
Welcome to Ansible AWX! Please sign in.
USERNAME

PASSWORD

SIGN IN WITH 9

_images/wekan-logo.png

_images/bigbluebutton-logo.png
@ BigBlueButton'

_images/wizard.png

_images/beta.png

_images/windowlist.png

_images/1renater.png
M RENATER

_images/terminal.png

_images/sympa_logo.png
ey

_images/access.png

_images/tutorials.png

_images/SAPLogo.gif

_images/tomcat_logo.png

_images/awx-attr.png
v

v

Variables

Virtual Hosts

SAML2 Service

SAML Identity Providers

SAML Service Providers

v

awx
4 Metadata
v Exported attributes
4 givenName
7 mail
7 sn

7 uid
> Options

> Macros

n

#vsave fBrowse v @ Hide help

Exported attributes

Key name

givenName

mail

sn

uid

Exported attributes

Exported attributes

Key name

on

givenName

mail

sn

uid

Name

on

© Add attribute

Friendly name

Friendly name

Format

Mandatory

Jon @ off

:IG
:IG
:IG

:Ieo

Format

_images/utilities.png

_images/alfresco_logo.png
Alfresco

_images/user_federation_id-resize-web.png
Domiy Provicer Semios
Tranag My

15 Mamge o

> Maage s

1+ Companyprote

(o sacuyContos

[—

'+ ConmuncaonTumpies

[y—

1+ Monsorng

[—

[y —

1+ Googe Ao

_images/awx-metadata.png
> Virtual Hosts

> SAML2 Service

‘ > SAML Identity Providers

v SAML Service Providers

A #save Bowse~ @Hidehep X Cancel B Download

Metadata
Edit content :
<mdtEnityDescriptor xmins:md="urn-0asis:names1c-SAML:2.0:mefadata’ cacheDuration="P10D" enfiy|D="awx inira worieks.com’>

<m:SPSSODescrptor AuthnRequesis Signed="flse" WantAssertionsSigned="flse" protocolSupportEnuMeration="urm:0asis names-tc-SAML:2.0;potocar>
<mcKeyDescriptor use="signing"><dsKeylnfo xmins:s="tp-/hmwww3.orgr2000/09/xrldsigé"><s:XS09Data>

<ds XS09Certifcate>MIIFNICCAXGGAWIBAQIRAOESKKIaRUSEpyiaz3Huvs4wDQY JKoZIhveNAQELBQAWGZYGIAYBGNVBAMMEWIGHIRLndverRIa3MuY 29MSMIQYIKoZIhveNAQKEFHRZEXNKZG LpbKB3b3102WizL mNVBTEQMAGGAIUECGWHV2S
YAGVICZEMMAOGALUECYMDRENIMQSHCQYDVQQGENIGUIEWMEQGALUECANNSWIGRIEZYYWSIZTEOMAWGALUEBWEUGEyaXMuHhCNMAWNDESMWMDAWWCNMZQWMzISMIMDAWWICEMECMBUGALUE AWV YXd4LmiudHIhLndven
'RIa3MuY 29tMSMAIQY JKoZInveNAQKBFRzeXNKZG LobkE3b3J0ZWizLmNvb TEQMAGALUECwHV29ydGViczEMMAOGALUECHWDRENIMQSHC QY DVQQGEWIGUIEWMBQGALUECAWNSWXIGRIIEZY YWS;ZTEOMANGALUEBWWFUGFyaXMwga

v Ao 33D AQUAAASOMAREKAOSAGDNLNPIETSHLSTo T saba gD HoSTE Bk TR Lo 2 0EO VG5O SAL
IGRUNSEKTegCiaZ00CRCIQaayIkZUoaIdcxMUAZISgoDgqDE €S CPYOTAZAZiASnGSFUyBa 43T ASMZDZAZouLRE R S22 GV YT mPBObsH4WRS2519HIKAA QPNDISREIGAHre 25 bic0L gy KTHQISppn
|/ Metadata 2+ HPALISIPPNPHK B INAGBAAG TESMAGALUCDNED
> Exported attributes Replace by file :
> options | Browse... | Nofile selected.
Load from URL :
> Macros

_images/spring_logo.png
Sprf;lg

_images/simplesamlphp_sp_signature.png
Signature
Sign SSO message

Check SSO message
signature

Sign SLO message

Check SLO message
signature

On

On

On

off

off

off

off

Default

Default

_images/symfony_logo.png

_images/status_standard.png
.. Lemonldap::NG statistics

H Total

0K 56 (18.67 / mn)
PORTAL_ALREADY_AUTHENTICATED 2 (0.67 / mn)
PORTAL_BADCREDENTIALS 1 (0.33 / mn)
PORTAL_FORMENPTY 3 (1.00 / mn)
PORTAL_OK 1 (0.33 / mn)
REDIRECT 2 (0.67 / mn)

M Average for last 5 minutes

oK 1.40 / mn
PORTAL_ALREADY_AUTHENTICATED 0.40 / mn
PORTAL _BADCREDENTIALS 0.20 / mn
PORTAL_FORMEMPTY 0.60 / mn
PORTAL_OK 0.20 / mn
REDIRECT 0.40 / mn

Total users : 1
Local Cache : 2 objects

Server up for : 0d Oh 3mn

Standard view Top 10 Raw results

_images/simplesamlphp_idp_metadata.png
Metadata

Edit content :

<2xmi version="1.0"7>
<md:EntityDescriptor xmins:ma="urn:oasis:names:tc:SAML:2.0:metadata’ xmins:c
<ma:IDPSSODescriptor protocolSupportEnumeratior
<md:KeyDescriptor use="signing">
<ds:Keyinfo xmins:ds="http://www.w3.0rg/2000/09/xmldsigh">
<ds:X509Data>

Htp: /v w3, org/2000/09/xmidsig#” entitylD="hitp://localhost/simplesamiphp/sami2/idp/metadata. php">
um:oasis:names:tc:SAML:2.0:protocol">

<ds:X509Certficate>MIIDETCCAMGgAWIBAIJALZIADOWQ4TMAOGCSqGS Ib3DQEBCWUAMFMXCZAJBGNVBAY TAKZSMRMWEQY DVQQIDARTE21ILVNOY X RIMQOWCWY DVQQHDARMEWIUMQWWCg
'YDVQQKDANTRIWAE|AQBANVBAMMCWxvY 2F saG9ZdDASFWOXNIAZMAXMMyMzZIaF wOyN|AZMIAXMIMyMZIaMFMXCZAJBGNVBAY TAKZSMRMWEQY DVQQIDARTD21ILVNOY XRIMQOWCWY DVQQHDAR

Replace by file

Parcourir... Aucun fichier sélectionné.
Load from URL :

http://localhost/simplesamiphp/sami2/idp/metadata. php Load

_images/simplesamlphp_idp_attributes.png
Exported attributes

Key name Name Friendly name Mandatory Format

uid user on ® off

_images/simplesamlphp_logo.png
s?mpIeSAMLphp

_images/simplesamlphp_idp_signature.png
Signature
Sign SSO message

Check SSO message
signature

Sign SLO message

Check SLO message
signature

® on

® on

® on

® on

off

off

off

off

Default

Default

_images/simplesamlphp_sp_authentication.png
SAML 2.0 SP Demo Example

Hi, this is the status page of SimpleSAMLphp. Here you can see if your session is timed out, how long it lasts until it times out and all the attributes that are
attached to your session.

Your attributes
User ID dwho
uid
Mail dwho@badwolf.org
mail

Common name Doctor Who
e

Logout
[Logout]

_images/simplesamlphp_sp_attributes.png
Exported attributes

Key name Name
cn cn
uid uid
mail mail

Friendly name

Mandatory

On

off

Format

:IO
:IO

(4]

_images/simplesamlphp_sp_metadata.png
Metadata

Edit content :

<2xmi version="1.0"7>
<md:EntityDescriptor xmins:me
/default-sp">
<md:SPSSODescriptor protocolSupportEnumeratior
<md:KeyDescriptor use="signing">
<ds:Keyinfo xmins:ds="http://www.w3.0rg/2000/09/xmidsig#">
<ds:X509Data>

im:oasis:names:tc: SAML:2.0:metadata” xmins:

Htp: /v w3, 0rg/2000/09/xmidsig#” entitylD="hitp://localhost/simplesamiphpimodule. php/sami/spimetadata.php

im:oasis:names:tc:SAML: 1. 1:protocol ur:oasis:names:tc:SAML:2.0:protocol">

s XB09CertifcatasMIDATCCAMGAAWIRAGLIAL ZHdDOWO4I7MANGCSAGS INANOFRCWLAMEMXC7A.IRANVRAY TAKZ SMRMWE QY NV OOIDARTE 11l VNOY X RIMOOWEWY DVOGHDARMAWSLMOWWEaY

Replace by file

Parcourir... | Aucun fichier sélectionné.
Load from URL :

http://localhost/simplesamiphp/module. php/saml/sp/metadata. php/default-sp Load

